File size: 9,018 Bytes
5cfddb1 48bf795 5cfddb1 48bf795 5cfddb1 48bf795 5cfddb1 48bf795 5cfddb1 48bf795 5cfddb1 48bf795 5cfddb1 48bf795 5cfddb1 48bf795 5cfddb1 48bf795 5cfddb1 48bf795 5cfddb1 48bf795 5cfddb1 48bf795 5cfddb1 48bf795 5cfddb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
# set path
import glob, os, sys;
sys.path.append('../utils')
#import needed libraries
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import streamlit as st
from st_aggrid import AgGrid
from st_aggrid.shared import ColumnsAutoSizeMode
from utils.vulnerability_classifier import vulnerability_classification
from utils.vulnerability_classifier import runPreprocessingPipeline, load_Classifier
import logging
logger = logging.getLogger(__name__)
from utils.checkconfig import getconfig
# Declare all the necessary variables
config = getconfig('paramconfig.cfg')
model_name = config.get('vulnerability','MODEL')
split_by = config.get('vulnerability','SPLIT_BY')
split_length = int(config.get('vulnerability','SPLIT_LENGTH'))
split_overlap = int(config.get('vulnerability','SPLIT_OVERLAP'))
remove_punc = bool(int(config.get('vulnerability','REMOVE_PUNC')))
split_respect_sentence_boundary = bool(int(config.get('vulnerability','RESPECT_SENTENCE_BOUNDARY')))
threshold = float(config.get('vulnerability','THRESHOLD'))
top_n = int(config.get('vulnerability','TOP_KEY'))
def app():
#### APP INFO #####
with st.container():
st.markdown("<h1 style='text-align: center; color: black;'> Vulnerability Classification </h1>", unsafe_allow_html=True)
st.write(' ')
st.write(' ')
with st.expander("ℹ️ - About this app", expanded=False):
st.write(
"""
The *SDG Analysis* app is an easy-to-use interface built \
in Streamlit for analyzing policy documents with respect to SDG \
Classification for the paragraphs/texts in the document and \
extracting the keyphrase per SDG label - developed by GIZ Data \
and the Sustainable Development Solution Network. \n
""")
st.write("""**Document Processing:** The Uploaded/Selected document is \
automatically cleaned and split into paragraphs with a maximum \
length of 120 words using a Haystack preprocessing pipeline. The \
length of 120 is an empirical value which should reflect the length \
of a “context” and should limit the paragraph length deviation. \
However, since we want to respect the sentence boundary the limit \
can breach and hence this limit of 120 is tentative. \n
""")
st.write("""**SDG cLassification:** The application assigns paragraphs \
to 16 of the 17 United Nations Sustainable Development Goals (SDGs).\
SDG 17 “Partnerships for the Goals” is excluded from the analysis due \
to its broad nature which could potentially inflate the results. \
Each paragraph is assigned to one SDG only. Again, the results are \
displayed in a summary table including the number of the SDG, a \
relevancy score highlighted through a green color shading, and the \
respective text of the analyzed paragraph. Additionally, a pie \
chart with a blue color shading is displayed which illustrates the \
three most prominent SDGs in the document. The SDG classification \
uses open-source training [data](https://zenodo.org/record/5550238#.Y25ICHbMJPY) \
from [OSDG.ai](https://osdg.ai/) which is a global \
partnerships and growing community of researchers and institutions \
interested in the classification of research according to the \
Sustainable Development Goals. The summary table only displays \
paragraphs with a calculated relevancy score above 85%. \n""")
st.write("""**Keyphrase Extraction:** The application extracts 15 \
keyphrases from the document, for each SDG label and displays the \
results in a summary table. The keyphrases are extracted using \
using [Textrank](https://github.com/summanlp/textrank)\
which is an easy-to-use computational less expensive \
model leveraging combination of TFIDF and Graph networks.
""")
st.write("")
st.write("")
st.markdown("Some runtime metrics tested with cpu: Intel(R) Xeon(R) CPU @ 2.20GHz, memory: 13GB")
col1,col2,col3,col4 = st.columns([2,2,4,4])
with col1:
st.caption("Loading Time Classifier")
# st.markdown('<div style="text-align: center;">12 sec</div>', unsafe_allow_html=True)
st.write("12 sec")
with col2:
st.caption("OCR File processing")
# st.markdown('<div style="text-align: center;">50 sec</div>', unsafe_allow_html=True)
st.write("50 sec")
with col3:
st.caption("SDG Classification of 200 paragraphs(~ 35 pages)")
# st.markdown('<div style="text-align: center;">120 sec</div>', unsafe_allow_html=True)
st.write("120 sec")
with col4:
st.caption("Keyword extraction for 200 paragraphs(~ 35 pages)")
# st.markdown('<div style="text-align: center;">3 sec</div>', unsafe_allow_html=True)
st.write("3 sec")
### Main app code ###
with st.container():
if st.button("RUN Vulnerability Analysis"):
if 'filepath' in st.session_state:
file_name = st.session_state['filename']
file_path = st.session_state['filepath']
classifier = load_Classifier(classifier_name=model_name)
st.session_state['vulnerability_classifier'] = classifier
all_documents = runPreprocessingPipeline(file_name= file_name,
file_path= file_path, split_by= split_by,
split_length= split_length,
split_respect_sentence_boundary= split_respect_sentence_boundary,
split_overlap= split_overlap, remove_punc= remove_punc)
if len(all_documents['documents']) > 100:
warning_msg = ": This might take sometime, please sit back and relax."
else:
warning_msg = ""
with st.spinner("Running Classification{}".format(warning_msg)):
df, x = vulnerability_classification(haystack_doc=all_documents['documents'],
threshold= threshold)
df = df.drop(['Relevancy'], axis = 1)
vulnerability_labels = x.vulnerability.unique()
textrank_keyword_list = []
for label in sdg_labels:
vulnerability_data = " ".join(df[df.vulnerability == label].text.to_list())
textranklist_ = textrank(textdata=sdgdata, words= top_n)
if len(textranklist_) > 0:
textrank_keyword_list.append({'Vulnerability':label, 'TextRank Keywords':",".join(textranklist_)})
textrank_keywords_df = pd.DataFrame(textrank_keyword_list)
plt.rcParams['font.size'] = 25
colors = plt.get_cmap('Blues')(np.linspace(0.2, 0.7, len(x)))
# plot
fig, ax = plt.subplots()
ax.pie(x['count'], colors=colors, radius=2, center=(4, 4),
wedgeprops={"linewidth": 1, "edgecolor": "white"},
textprops={'fontsize': 14},
frame=False,labels =list(x.SDG_Num),
labeldistance=1.2)
# fig.savefig('temp.png', bbox_inches='tight',dpi= 100)
st.markdown("#### Anything related to Vulnerabilities? ####")
c4, c5, c6 = st.columns([1,2,2])
with c5:
st.pyplot(fig)
with c6:
labeldf = x['SDG_name'].values.tolist()
labeldf = "<br>".join(labeldf)
st.markdown(labeldf, unsafe_allow_html=True)
st.write("")
st.markdown("###### What keywords are present under vulnerability classified text? ######")
AgGrid(textrank_keywords_df, reload_data = False,
update_mode="value_changed",
columns_auto_size_mode = ColumnsAutoSizeMode.FIT_CONTENTS)
st.write("")
st.markdown("###### Top few vulnerability Classified paragraph/text results ######")
AgGrid(df, reload_data = False, update_mode="value_changed",
columns_auto_size_mode = ColumnsAutoSizeMode.FIT_CONTENTS)
else:
st.info("🤔 No document found, please try to upload it at the sidebar!")
logging.warning("Terminated as no document provided")
|