File size: 3,770 Bytes
5a444be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import logging
import os
from fvcore.common.timer import Timer
from detectron2.structures import BoxMode
from fvcore.common.file_io import PathManager
from detectron2.data import DatasetCatalog, MetadataCatalog
from lvis import LVIS

logger = logging.getLogger(__name__)

__all__ = ["load_GRiTcoco_json", "register_GRiTcoco_instances"]


def register_GRiTcoco_instances(name, metadata, json_file, image_root):
    """
    """
    DatasetCatalog.register(name, lambda: load_GRiTcoco_json(
        json_file, image_root, name))
    MetadataCatalog.get(name).set(
        json_file=json_file, image_root=image_root,
        evaluator_type="coco", **metadata
    )


def get_GRiTcoco_meta():
    categories = [{'supercategory': 'object', 'id': 1, 'name': 'object'}]
    categories = sorted(categories, key=lambda x: x["id"])
    thing_classes = [k["name"] for k in categories]
    meta = {"thing_classes": thing_classes}
    return meta


def load_GRiTcoco_json(json_file, image_root, dataset_name=None):
    '''
    Load COCO class name text for object description for GRiT
    '''

    json_file = PathManager.get_local_path(json_file)

    timer = Timer()
    lvis_api = LVIS(json_file)
    if timer.seconds() > 1:
        logger.info("Loading {} takes {:.2f} seconds.".format(
            json_file, timer.seconds()))

    class_names = {}
    sort_cat = sorted(lvis_api.dataset['categories'], key=lambda x: x['id'])
    for x in sort_cat:
        class_names[x['id']] = x['name']

    img_ids = sorted(lvis_api.imgs.keys())
    imgs = lvis_api.load_imgs(img_ids)
    anns = [lvis_api.img_ann_map[img_id] for img_id in img_ids]

    ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image]
    assert len(set(ann_ids)) == len(ann_ids), \
        "Annotation ids in '{}' are not unique".format(json_file)

    imgs_anns = list(zip(imgs, anns))
    logger.info("Loaded {} images in the LVIS v1 format from {}".format(
        len(imgs_anns), json_file))

    dataset_dicts = []

    for (img_dict, anno_dict_list) in imgs_anns:
        record = {}
        if "file_name" in img_dict:
            file_name = img_dict["file_name"]
            record["file_name"] = os.path.join(image_root, file_name)

        record["height"] = int(img_dict["height"])
        record["width"] = int(img_dict["width"])
        image_id = record["image_id"] = img_dict["id"]

        objs = []
        for anno in anno_dict_list:
            assert anno["image_id"] == image_id
            if anno.get('iscrowd', 0) > 0:
                continue
            obj = {"bbox": anno["bbox"], "bbox_mode": BoxMode.XYWH_ABS}
            obj["category_id"] = 0
            obj["object_description"] = class_names[anno['category_id']]
            if 'segmentation' in anno:
                segm = anno["segmentation"]
                valid_segm = [poly for poly in segm \
                    if len(poly) % 2 == 0 and len(poly) >= 6]
                if not len(segm) == len(valid_segm):
                    print('Annotation contains an invalid polygon with < 3 points')
                assert len(segm) > 0
                obj["segmentation"] = segm
            objs.append(obj)
        record["annotations"] = objs
        if len(record["annotations"]) == 0:
            continue
        record["task"] = "ObjectDet"
        dataset_dicts.append(record)

    return dataset_dicts


_CUSTOM_SPLITS_LVIS = {
    "GRiT_coco2017_train": ("coco/train2017/", "coco/annotations/instances_train2017.json"),
}


for key, (image_root, json_file) in _CUSTOM_SPLITS_LVIS.items():
    register_GRiTcoco_instances(
        key,
        get_GRiTcoco_meta(),
        os.path.join("datasets", json_file) if "://" not in json_file else json_file,
        os.path.join("datasets", image_root),
    )