File size: 10,424 Bytes
674d663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
import math

import torch
import torch.nn as nn
import torch.nn.functional as F


# FFN
def FeedForward(dim, mult=4):
    inner_dim = int(dim * mult)
    return nn.Sequential(
        nn.LayerNorm(dim),
        nn.Linear(dim, inner_dim, bias=False),
        nn.GELU(),
        nn.Linear(inner_dim, dim, bias=False),
    )


def reshape_tensor(x, heads):
    bs, length, width = x.shape
    # (bs, length, width) --> (bs, length, n_heads, dim_per_head)
    x = x.view(bs, length, heads, -1)
    # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
    x = x.transpose(1, 2)
    # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
    x = x.reshape(bs, heads, length, -1)
    return x


class PerceiverAttention(nn.Module):

    def __init__(self, *, dim, dim_head=64, heads=8):
        super().__init__()
        self.scale = dim_head ** -0.5
        self.dim_head = dim_head
        self.heads = heads
        inner_dim = dim_head * heads

        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)

        self.to_q = nn.Linear(dim, inner_dim, bias=False)
        self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
        self.to_out = nn.Linear(inner_dim, dim, bias=False)

    def forward(self, x, latents):
        """
        Args:
            x (torch.Tensor): image features
                shape (b, n1, D)
            latent (torch.Tensor): latent features
                shape (b, n2, D)
        """
        x = self.norm1(x)
        latents = self.norm2(latents)

        b, l, _ = latents.shape

        q = self.to_q(latents)
        kv_input = torch.cat((x, latents), dim=-2)
        k, v = self.to_kv(kv_input).chunk(2, dim=-1)

        q = reshape_tensor(q, self.heads)
        k = reshape_tensor(k, self.heads)
        v = reshape_tensor(v, self.heads)

        # attention
        scale = 1 / math.sqrt(math.sqrt(self.dim_head))
        weight = (q * scale) @ (k * scale).transpose(-2, -1)  # More stable with f16 than dividing afterwards
        weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
        out = weight @ v

        out = out.permute(0, 2, 1, 3).reshape(b, l, -1)

        return self.to_out(out)


class AttentionPool2d(nn.Module):

    def __init__(self, seq_len: int, embed_dim: int, num_heads: int, output_dim: int = None):
        super().__init__()
        self.positional_embedding = nn.Parameter(torch.randn(seq_len + 1, embed_dim) / embed_dim ** 0.5)
        self.k_proj = nn.Linear(embed_dim, embed_dim)
        self.q_proj = nn.Linear(embed_dim, embed_dim)
        self.v_proj = nn.Linear(embed_dim, embed_dim)
        self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
        self.num_heads = num_heads

    def forward(self, x, return_all_tokens=False):
        # x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1)  # NCHW -> (HW)NC
        x = x.permute(1, 0, 2)  # (N(HW)C) => (HW)NC
        x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0)  # (HW+1)NC
        x = x + self.positional_embedding[:, None, :].to(x.dtype)  # (HW+1)NC
        x, _ = F.multi_head_attention_forward(query=x,
                                              key=x,
                                              value=x,
                                              embed_dim_to_check=x.shape[-1],
                                              num_heads=self.num_heads,
                                              q_proj_weight=self.q_proj.weight,
                                              k_proj_weight=self.k_proj.weight,
                                              v_proj_weight=self.v_proj.weight,
                                              in_proj_weight=None,
                                              in_proj_bias=torch.cat(
                                                  [self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
                                              bias_k=None,
                                              bias_v=None,
                                              add_zero_attn=False,
                                              dropout_p=0,
                                              out_proj_weight=self.c_proj.weight,
                                              out_proj_bias=self.c_proj.bias,
                                              use_separate_proj_weight=True,
                                              training=self.training,
                                              need_weights=False)
        if return_all_tokens:
            return x
        else:
            return x[0]


class Resampler(nn.Module):

    def __init__(
            self,
            dim=1024,
            depth=8,
            dim_head=64,
            heads=16,
            num_queries=8,
            embedding_dim=768,
            output_dim=1024,
            ff_mult=4,
    ):
        super().__init__()

        self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim ** 0.5)

        self.proj_in = nn.Linear(embedding_dim, dim)

        self.proj_out = nn.Linear(dim, output_dim)
        self.norm_out = nn.LayerNorm(output_dim)

        self.in_dim = dim
        self.out_dim = output_dim

        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(
                nn.ModuleList([
                    PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
                    FeedForward(dim=dim, mult=ff_mult),
                ]))

    def forward(self, x):

        latents = self.latents.repeat(x.size(0), 1, 1)

        x = self.proj_in(x)

        for attn, ff in self.layers:
            latents = attn(x, latents) + latents
            latents = ff(latents) + latents

        latents = self.proj_out(latents)
        output_embeds = self.norm_out(latents)

        return output_embeds


class ResamplerXL(nn.Module):

    def __init__(
            self,
            dim=1024,
            depth=8,
            dim_head=64,
            heads=16,
            num_queries=8,
            embedding_dim=768,
            output1_dim=768,
            output2_dim=1280,
            ff_mult=4,
    ):
        super().__init__()

        self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim ** 0.5)

        self.proj_in = nn.Linear(embedding_dim, dim)

        # self.proj_out = nn.Linear(dim, output_dim)
        self.norm_out = nn.LayerNorm(dim)

        self.in_dim = dim
        self.out_dim = output1_dim + output2_dim

        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(
                nn.ModuleList([
                    PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
                    FeedForward(dim=dim, mult=ff_mult),
                ]))

        self.unet_proj_1 = nn.Linear(self.in_dim, output1_dim)
        self.unet_proj_2 = nn.Linear(self.in_dim, output2_dim)
        self.unet_attnpool = AttentionPool2d(num_queries, self.in_dim, heads, output2_dim)

    def forward(self, x):

        latents = self.latents.repeat(x.size(0), 1, 1)

        x = self.proj_in(x)

        for attn, ff in self.layers:
            latents = attn(x, latents) + latents
            latents = ff(latents) + latents

        hidden_embeds = self.norm_out(latents)

        encoder_hidden_1 = self.unet_proj_1(hidden_embeds)  # [bs, 256, 768]
        encoder_hidden_2 = self.unet_proj_2(hidden_embeds)  # [bs, 256, 1280]
        prompt_embeds = torch.cat([encoder_hidden_1, encoder_hidden_2], dim=-1)  # [bs, 256, 2048]
        pooled_prompt_embeds = self.unet_attnpool(hidden_embeds)  # [bs, 1280]

        return prompt_embeds, pooled_prompt_embeds


class ResamplerXLV2(nn.Module):

    def __init__(
            self,
            dim=1024,
            depth=8,
            dim_head=64,
            heads=16,
            num_queries=8,
            embedding_dim=768,
            output1_dim=768,
            output2_dim=1280,
            ff_mult=4,
    ):
        super().__init__()

        self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim ** 0.5)

        self.proj_in = nn.Linear(embedding_dim, dim)

        # self.proj_out = nn.Linear(dim, output_dim)
        self.norm_out = nn.LayerNorm(dim)

        self.in_dim = dim
        self.out_dim = output1_dim + output2_dim

        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(
                nn.ModuleList([
                    PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
                    FeedForward(dim=dim, mult=ff_mult),
                ]))

        self.unet_proj_1 = nn.Linear(self.in_dim, output1_dim)
        self.unet_proj_2 = nn.Linear(self.in_dim, output2_dim)
        self.unet_attnpool = AttentionPool2d(num_queries, self.in_dim, heads, output2_dim)

    def forward(self, x, pooled_text_embeds=None):

        latents = self.latents.repeat(x.size(0), 1, 1)
        x = F.normalize(x)

        x = self.proj_in(x)

        for attn, ff in self.layers:
            latents = attn(x, latents) + latents
            latents = ff(latents) + latents

        hidden_embeds = self.norm_out(latents)

        encoder_hidden_1 = self.unet_proj_1(hidden_embeds)  # [bs, 256, 768]
        encoder_hidden_2 = self.unet_proj_2(hidden_embeds)  # [bs, 256, 1280]
        prompt_embeds = torch.cat([encoder_hidden_1, encoder_hidden_2], dim=-1)  # [bs, 256, 2048]
        pooled_prompt_embeds = self.unet_attnpool(hidden_embeds)  # [bs, 1280]

        return prompt_embeds, pooled_prompt_embeds


class ResamplerXLIdentity(nn.Module):
    def __init__(self) -> None:
        super().__init__()

    def forward(self, x, pooled_text_embeds=None):
        return x, pooled_text_embeds


if __name__ == '__main__':
    image_proj_model = Resampler(dim=1024,
                                 depth=4,
                                 dim_head=64,
                                 heads=12,
                                 num_queries=1024,
                                 embedding_dim=1024,
                                 output_dim=1024,
                                 ff_mult=4)
    numel = 0
    for name, param in image_proj_model.named_parameters():
        numel += param.numel()

    print(f'Total params: {numel}')