File size: 9,065 Bytes
2890711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import argparse
import datetime
import json
import math
import os
import sys
import time
from glob import glob
from pathlib import Path
from typing import Optional

import cv2
import numpy as np
import torch
import torchvision
from einops import rearrange, repeat
from fire import Fire
from omegaconf import OmegaConf
from PIL import Image
from torchvision.transforms import CenterCrop, Compose, Resize, ToTensor
import tempfile

sys.path.insert(1, os.path.join(sys.path[0], '..'))
from sgm.util import default, instantiate_from_config



def to_relative_RT2(org_pose, keyframe_idx=0, keyframe_zero=False):
        org_pose = org_pose.reshape(-1, 3, 4) # [t, 3, 4]
        R_dst = org_pose[:, :, :3]
        T_dst = org_pose[:, :, 3:]

        R_src = R_dst[keyframe_idx: keyframe_idx+1].repeat(org_pose.shape[0], axis=0) # [t, 3, 3]
        T_src = T_dst[keyframe_idx: keyframe_idx+1].repeat(org_pose.shape[0], axis=0)

        R_src_inv = R_src.transpose(0, 2, 1) # [t, 3, 3]
        
        R_rel = R_dst @ R_src_inv # [t, 3, 3]
        T_rel = T_dst - R_rel@T_src

        RT_rel = np.concatenate([R_rel, T_rel], axis=-1) # [t, 3, 4]
        RT_rel = RT_rel.reshape(-1, 12) # [t, 12]

        if keyframe_zero:
            RT_rel[keyframe_idx] = np.zeros_like(RT_rel[keyframe_idx])

        return RT_rel

def build_model(config, ckpt, device, num_frames, num_steps):
    num_frames = default(num_frames, 14)
    num_steps = default(num_steps, 25)
    model_config = default(config, "configs/inference/config_motionctrl_cmcm.yaml")

    print(f"Loading model from {ckpt}")
    model, filter = load_model(
        model_config,
        ckpt,
        device,
        num_frames,
        num_steps,
    )

    model.eval()

    return model

def motionctrl_sample(
    model,
    image: Image = None,  # Can either be image file or folder with image files
    RT: np.ndarray = None,
    num_frames: Optional[int] = None,
    fps_id: int = 6,
    motion_bucket_id: int = 127,
    cond_aug: float = 0.02,
    seed: int = 23,
    decoding_t: int = 1,  # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
    save_fps: int = 10,
    sample_num: int = 1,
    device: str = "cuda",
):
    """
    Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each
    image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`.
    """

    torch.manual_seed(seed)

    w, h = image.size

    # RT: [t, 3, 4]
    # RT = RT.reshape(-1, 3, 4) # [t, 3, 4]
    # adaptive to different spatial ratio
    # base_len = min(w, h) * 0.5
    # K = np.array([[w/base_len, 0, w/base_len],
    #               [0, h/base_len, h/base_len],
    #               [0, 0, 1]])
    # for i in range(RT.shape[0]):
    #     RT[i,:,:] = np.dot(K, RT[i,:,:])

    RT = to_relative_RT2(RT) # [t, 12]
    RT = torch.tensor(RT).float().to(device) # [t, 12]
    RT = RT.unsqueeze(0).repeat(2,1,1)

    if h % 64 != 0 or w % 64 != 0:
        width, height = map(lambda x: x - x % 64, (w, h))
        image = image.resize((width, height))
        print(
            f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!"
        )

    image = ToTensor()(image)
    image = image * 2.0 - 1.0

    image = image.unsqueeze(0).to(device)
    H, W = image.shape[2:]
    assert image.shape[1] == 3
    F = 8
    C = 4
    shape = (num_frames, C, H // F, W // F)

    if motion_bucket_id > 255:
        print(
            "WARNING: High motion bucket! This may lead to suboptimal performance."
        )

    if fps_id < 5:
        print("WARNING: Small fps value! This may lead to suboptimal performance.")

    if fps_id > 30:
        print("WARNING: Large fps value! This may lead to suboptimal performance.")

    value_dict = {}
    value_dict["motion_bucket_id"] = motion_bucket_id
    value_dict["fps_id"] = fps_id
    value_dict["cond_aug"] = cond_aug
    value_dict["cond_frames_without_noise"] = image
    value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image)

    with torch.no_grad():
        with torch.autocast(device):
            batch, batch_uc = get_batch(
                get_unique_embedder_keys_from_conditioner(model.conditioner),
                value_dict,
                [1, num_frames],
                T=num_frames,
                device=device,
            )
            c, uc = model.conditioner.get_unconditional_conditioning(
                batch,
                batch_uc=batch_uc,
                force_uc_zero_embeddings=[
                    "cond_frames",
                    "cond_frames_without_noise",
                ],
            )

            for k in ["crossattn", "concat"]:
                uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
                uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
                c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
                c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)

            

            additional_model_inputs = {}
            additional_model_inputs["image_only_indicator"] = torch.zeros(
                2, num_frames
            ).to(device)
            #additional_model_inputs["image_only_indicator"][:,0] = 1
            additional_model_inputs["num_video_frames"] = batch["num_video_frames"]

            
            additional_model_inputs["RT"] = RT.clone()

            def denoiser(input, sigma, c):
                return model.denoiser(
                    model.model, input, sigma, c, **additional_model_inputs
                )

            results = []
            for j in range(sample_num):
                randn = torch.randn(shape, device=device)
                samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
                model.en_and_decode_n_samples_a_time = decoding_t
                samples_x = model.decode_first_stage(samples_z)
                samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0) # [1*t, c, h, w]
                results.append(samples)

            samples = torch.stack(results, dim=0) # [sample_num, t, c, h, w]
            samples = samples.data.cpu()

            video_path = tempfile.NamedTemporaryFile(suffix='.mp4').name
            save_results(samples, video_path, fps=save_fps)
    
    return video_path

def save_results(resutls, filename, fps=10):
    video = resutls.permute(1, 0, 2, 3, 4) # [t, sample_num, c, h, w]
    frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(video.shape[1])) for framesheet in video] #[3, 1*h, n*w]
    grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w]
    # already in [0,1]
    grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
    torchvision.io.write_video(filename, grid, fps=fps, video_codec='h264', options={'crf': '10'})

def get_unique_embedder_keys_from_conditioner(conditioner):
    return list(set([x.input_key for x in conditioner.embedders]))


def get_batch(keys, value_dict, N, T, device):
    batch = {}
    batch_uc = {}

    for key in keys:
        if key == "fps_id":
            batch[key] = (
                torch.tensor([value_dict["fps_id"]])
                .to(device)
                .repeat(int(math.prod(N)))
            )
        elif key == "motion_bucket_id":
            batch[key] = (
                torch.tensor([value_dict["motion_bucket_id"]])
                .to(device)
                .repeat(int(math.prod(N)))
            )
        elif key == "cond_aug":
            batch[key] = repeat(
                torch.tensor([value_dict["cond_aug"]]).to(device),
                "1 -> b",
                b=math.prod(N),
            )
        elif key == "cond_frames":
            batch[key] = repeat(value_dict["cond_frames"], "1 ... -> b ...", b=N[0])
        elif key == "cond_frames_without_noise":
            batch[key] = repeat(
                value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0]
            )
        else:
            batch[key] = value_dict[key]

    if T is not None:
        batch["num_video_frames"] = T

    for key in batch.keys():
        if key not in batch_uc and isinstance(batch[key], torch.Tensor):
            batch_uc[key] = torch.clone(batch[key])
    return batch, batch_uc


def load_model(
    config: str,
    ckpt: str,
    device: str,
    num_frames: int,
    num_steps: int,
):

    config = OmegaConf.load(config)
    config.model.params.ckpt_path = ckpt
    if device == "cuda":
        config.model.params.conditioner_config.params.emb_models[
            0
        ].params.open_clip_embedding_config.params.init_device = device

    config.model.params.sampler_config.params.num_steps = num_steps
    config.model.params.sampler_config.params.guider_config.params.num_frames = (
        num_frames
    )

    model = instantiate_from_config(config.model)

    model = model.to(device).eval()    

    filter = None #DeepFloydDataFiltering(verbose=False, device=device)
    return model, filter