Spaces:
Sleeping
Sleeping
File size: 9,065 Bytes
2890711 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import argparse
import datetime
import json
import math
import os
import sys
import time
from glob import glob
from pathlib import Path
from typing import Optional
import cv2
import numpy as np
import torch
import torchvision
from einops import rearrange, repeat
from fire import Fire
from omegaconf import OmegaConf
from PIL import Image
from torchvision.transforms import CenterCrop, Compose, Resize, ToTensor
import tempfile
sys.path.insert(1, os.path.join(sys.path[0], '..'))
from sgm.util import default, instantiate_from_config
def to_relative_RT2(org_pose, keyframe_idx=0, keyframe_zero=False):
org_pose = org_pose.reshape(-1, 3, 4) # [t, 3, 4]
R_dst = org_pose[:, :, :3]
T_dst = org_pose[:, :, 3:]
R_src = R_dst[keyframe_idx: keyframe_idx+1].repeat(org_pose.shape[0], axis=0) # [t, 3, 3]
T_src = T_dst[keyframe_idx: keyframe_idx+1].repeat(org_pose.shape[0], axis=0)
R_src_inv = R_src.transpose(0, 2, 1) # [t, 3, 3]
R_rel = R_dst @ R_src_inv # [t, 3, 3]
T_rel = T_dst - R_rel@T_src
RT_rel = np.concatenate([R_rel, T_rel], axis=-1) # [t, 3, 4]
RT_rel = RT_rel.reshape(-1, 12) # [t, 12]
if keyframe_zero:
RT_rel[keyframe_idx] = np.zeros_like(RT_rel[keyframe_idx])
return RT_rel
def build_model(config, ckpt, device, num_frames, num_steps):
num_frames = default(num_frames, 14)
num_steps = default(num_steps, 25)
model_config = default(config, "configs/inference/config_motionctrl_cmcm.yaml")
print(f"Loading model from {ckpt}")
model, filter = load_model(
model_config,
ckpt,
device,
num_frames,
num_steps,
)
model.eval()
return model
def motionctrl_sample(
model,
image: Image = None, # Can either be image file or folder with image files
RT: np.ndarray = None,
num_frames: Optional[int] = None,
fps_id: int = 6,
motion_bucket_id: int = 127,
cond_aug: float = 0.02,
seed: int = 23,
decoding_t: int = 1, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
save_fps: int = 10,
sample_num: int = 1,
device: str = "cuda",
):
"""
Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each
image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`.
"""
torch.manual_seed(seed)
w, h = image.size
# RT: [t, 3, 4]
# RT = RT.reshape(-1, 3, 4) # [t, 3, 4]
# adaptive to different spatial ratio
# base_len = min(w, h) * 0.5
# K = np.array([[w/base_len, 0, w/base_len],
# [0, h/base_len, h/base_len],
# [0, 0, 1]])
# for i in range(RT.shape[0]):
# RT[i,:,:] = np.dot(K, RT[i,:,:])
RT = to_relative_RT2(RT) # [t, 12]
RT = torch.tensor(RT).float().to(device) # [t, 12]
RT = RT.unsqueeze(0).repeat(2,1,1)
if h % 64 != 0 or w % 64 != 0:
width, height = map(lambda x: x - x % 64, (w, h))
image = image.resize((width, height))
print(
f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!"
)
image = ToTensor()(image)
image = image * 2.0 - 1.0
image = image.unsqueeze(0).to(device)
H, W = image.shape[2:]
assert image.shape[1] == 3
F = 8
C = 4
shape = (num_frames, C, H // F, W // F)
if motion_bucket_id > 255:
print(
"WARNING: High motion bucket! This may lead to suboptimal performance."
)
if fps_id < 5:
print("WARNING: Small fps value! This may lead to suboptimal performance.")
if fps_id > 30:
print("WARNING: Large fps value! This may lead to suboptimal performance.")
value_dict = {}
value_dict["motion_bucket_id"] = motion_bucket_id
value_dict["fps_id"] = fps_id
value_dict["cond_aug"] = cond_aug
value_dict["cond_frames_without_noise"] = image
value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image)
with torch.no_grad():
with torch.autocast(device):
batch, batch_uc = get_batch(
get_unique_embedder_keys_from_conditioner(model.conditioner),
value_dict,
[1, num_frames],
T=num_frames,
device=device,
)
c, uc = model.conditioner.get_unconditional_conditioning(
batch,
batch_uc=batch_uc,
force_uc_zero_embeddings=[
"cond_frames",
"cond_frames_without_noise",
],
)
for k in ["crossattn", "concat"]:
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)
additional_model_inputs = {}
additional_model_inputs["image_only_indicator"] = torch.zeros(
2, num_frames
).to(device)
#additional_model_inputs["image_only_indicator"][:,0] = 1
additional_model_inputs["num_video_frames"] = batch["num_video_frames"]
additional_model_inputs["RT"] = RT.clone()
def denoiser(input, sigma, c):
return model.denoiser(
model.model, input, sigma, c, **additional_model_inputs
)
results = []
for j in range(sample_num):
randn = torch.randn(shape, device=device)
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
model.en_and_decode_n_samples_a_time = decoding_t
samples_x = model.decode_first_stage(samples_z)
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0) # [1*t, c, h, w]
results.append(samples)
samples = torch.stack(results, dim=0) # [sample_num, t, c, h, w]
samples = samples.data.cpu()
video_path = tempfile.NamedTemporaryFile(suffix='.mp4').name
save_results(samples, video_path, fps=save_fps)
return video_path
def save_results(resutls, filename, fps=10):
video = resutls.permute(1, 0, 2, 3, 4) # [t, sample_num, c, h, w]
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(video.shape[1])) for framesheet in video] #[3, 1*h, n*w]
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w]
# already in [0,1]
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
torchvision.io.write_video(filename, grid, fps=fps, video_codec='h264', options={'crf': '10'})
def get_unique_embedder_keys_from_conditioner(conditioner):
return list(set([x.input_key for x in conditioner.embedders]))
def get_batch(keys, value_dict, N, T, device):
batch = {}
batch_uc = {}
for key in keys:
if key == "fps_id":
batch[key] = (
torch.tensor([value_dict["fps_id"]])
.to(device)
.repeat(int(math.prod(N)))
)
elif key == "motion_bucket_id":
batch[key] = (
torch.tensor([value_dict["motion_bucket_id"]])
.to(device)
.repeat(int(math.prod(N)))
)
elif key == "cond_aug":
batch[key] = repeat(
torch.tensor([value_dict["cond_aug"]]).to(device),
"1 -> b",
b=math.prod(N),
)
elif key == "cond_frames":
batch[key] = repeat(value_dict["cond_frames"], "1 ... -> b ...", b=N[0])
elif key == "cond_frames_without_noise":
batch[key] = repeat(
value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0]
)
else:
batch[key] = value_dict[key]
if T is not None:
batch["num_video_frames"] = T
for key in batch.keys():
if key not in batch_uc and isinstance(batch[key], torch.Tensor):
batch_uc[key] = torch.clone(batch[key])
return batch, batch_uc
def load_model(
config: str,
ckpt: str,
device: str,
num_frames: int,
num_steps: int,
):
config = OmegaConf.load(config)
config.model.params.ckpt_path = ckpt
if device == "cuda":
config.model.params.conditioner_config.params.emb_models[
0
].params.open_clip_embedding_config.params.init_device = device
config.model.params.sampler_config.params.num_steps = num_steps
config.model.params.sampler_config.params.guider_config.params.num_frames = (
num_frames
)
model = instantiate_from_config(config.model)
model = model.to(device).eval()
filter = None #DeepFloydDataFiltering(verbose=False, device=device)
return model, filter
|