File size: 12,798 Bytes
ad06aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import os, sys
import math
import json
import importlib
from pathlib import Path

import cv2
import random
import numpy as np
from PIL import Image
import webdataset as wds
import pytorch_lightning as pl

import torch
import torch.nn.functional as F
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from torchvision import transforms

from src.utils.train_util import instantiate_from_config
from src.utils.camera_util import (
    FOV_to_intrinsics, 
    center_looking_at_camera_pose, 
    get_surrounding_views,
)


class DataModuleFromConfig(pl.LightningDataModule):
    def __init__(
        self, 
        batch_size=8, 
        num_workers=4, 
        train=None, 
        validation=None, 
        test=None, 
        **kwargs,
    ):
        super().__init__()

        self.batch_size = batch_size
        self.num_workers = num_workers

        self.dataset_configs = dict()
        if train is not None:
            self.dataset_configs['train'] = train
        if validation is not None:
            self.dataset_configs['validation'] = validation
        if test is not None:
            self.dataset_configs['test'] = test
    
    def setup(self, stage):

        if stage in ['fit']:
            self.datasets = dict((k, instantiate_from_config(self.dataset_configs[k])) for k in self.dataset_configs)
        else:
            raise NotImplementedError

    def train_dataloader(self):

        sampler = DistributedSampler(self.datasets['train'])
        return wds.WebLoader(self.datasets['train'], batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, sampler=sampler)

    def val_dataloader(self):

        sampler = DistributedSampler(self.datasets['validation'])
        return wds.WebLoader(self.datasets['validation'], batch_size=1, num_workers=self.num_workers, shuffle=False, sampler=sampler)

    def test_dataloader(self):

        return wds.WebLoader(self.datasets['test'], batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False)


class ObjaverseData(Dataset):
    def __init__(self,
        root_dir='objaverse/',
        meta_fname='valid_paths.json',
        input_image_dir='rendering_random_32views',
        target_image_dir='rendering_random_32views',
        input_view_num=6,
        target_view_num=2,
        total_view_n=32,
        fov=50,
        camera_rotation=True,
        validation=False,
    ):
        self.root_dir = Path(root_dir)
        self.input_image_dir = input_image_dir
        self.target_image_dir = target_image_dir

        self.input_view_num = input_view_num
        self.target_view_num = target_view_num
        self.total_view_n = total_view_n
        self.fov = fov
        self.camera_rotation = camera_rotation

        with open(os.path.join(root_dir, meta_fname)) as f:
            filtered_dict = json.load(f)
        paths = filtered_dict['good_objs']
        self.paths = paths
        
        self.depth_scale = 4.0
            
        total_objects = len(self.paths)
        print('============= length of dataset %d =============' % len(self.paths))

    def __len__(self):
        return len(self.paths)

    def load_im(self, path, color):
        '''
        replace background pixel with random color in rendering
        '''
        pil_img = Image.open(path)

        image = np.asarray(pil_img, dtype=np.float32) / 255.
        alpha = image[:, :, 3:]
        image = image[:, :, :3] * alpha + color * (1 - alpha)

        image = torch.from_numpy(image).permute(2, 0, 1).contiguous().float()
        alpha = torch.from_numpy(alpha).permute(2, 0, 1).contiguous().float()
        return image, alpha
    
    def __getitem__(self, index):
        # load data
        while True:
            input_image_path = os.path.join(self.root_dir, self.input_image_dir, self.paths[index])
            target_image_path = os.path.join(self.root_dir, self.target_image_dir, self.paths[index])

            indices = np.random.choice(range(self.total_view_n), self.input_view_num + self.target_view_num, replace=False)
            input_indices = indices[:self.input_view_num]
            target_indices = indices[self.input_view_num:]

            '''background color, default: white'''
            bg_white = [1., 1., 1.]
            bg_black = [0., 0., 0.]

            image_list = []
            alpha_list = []
            depth_list = []
            normal_list = []
            pose_list = []

            try:
                input_cameras = np.load(os.path.join(input_image_path, 'cameras.npz'))['cam_poses']
                for idx in input_indices:
                    image, alpha = self.load_im(os.path.join(input_image_path, '%03d.png' % idx), bg_white)
                    normal, _ = self.load_im(os.path.join(input_image_path, '%03d_normal.png' % idx), bg_black)
                    depth = cv2.imread(os.path.join(input_image_path, '%03d_depth.png' % idx), cv2.IMREAD_UNCHANGED) / 255.0 * self.depth_scale
                    depth = torch.from_numpy(depth).unsqueeze(0)
                    pose = input_cameras[idx]
                    pose = np.concatenate([pose, np.array([[0, 0, 0, 1]])], axis=0)

                    image_list.append(image)
                    alpha_list.append(alpha)
                    depth_list.append(depth)
                    normal_list.append(normal)
                    pose_list.append(pose)

                target_cameras = np.load(os.path.join(target_image_path, 'cameras.npz'))['cam_poses']
                for idx in target_indices:
                    image, alpha = self.load_im(os.path.join(target_image_path, '%03d.png' % idx), bg_white)
                    normal, _ = self.load_im(os.path.join(target_image_path, '%03d_normal.png' % idx), bg_black)
                    depth = cv2.imread(os.path.join(target_image_path, '%03d_depth.png' % idx), cv2.IMREAD_UNCHANGED) / 255.0 * self.depth_scale
                    depth = torch.from_numpy(depth).unsqueeze(0)
                    pose = target_cameras[idx]
                    pose = np.concatenate([pose, np.array([[0, 0, 0, 1]])], axis=0)

                    image_list.append(image)
                    alpha_list.append(alpha)
                    depth_list.append(depth)
                    normal_list.append(normal)
                    pose_list.append(pose)

            except Exception as e:
                print(e)
                index = np.random.randint(0, len(self.paths))
                continue

            break
        
        images = torch.stack(image_list, dim=0).float()                 # (6+V, 3, H, W)
        alphas = torch.stack(alpha_list, dim=0).float()                 # (6+V, 1, H, W)
        depths = torch.stack(depth_list, dim=0).float()                 # (6+V, 1, H, W)
        normals = torch.stack(normal_list, dim=0).float()               # (6+V, 3, H, W)
        w2cs = torch.from_numpy(np.stack(pose_list, axis=0)).float()    # (6+V, 4, 4)
        c2ws = torch.linalg.inv(w2cs).float()

        normals = normals * 2.0 - 1.0
        normals = F.normalize(normals, dim=1)
        normals = (normals + 1.0) / 2.0
        normals = torch.lerp(torch.zeros_like(normals), normals, alphas)

        # random rotation along z axis
        if self.camera_rotation:
            degree = np.random.uniform(0, math.pi * 2)
            rot = torch.tensor([
                [np.cos(degree), -np.sin(degree), 0, 0],
                [np.sin(degree), np.cos(degree), 0, 0],
                [0, 0, 1, 0],
                [0, 0, 0, 1],
            ]).unsqueeze(0).float()
            c2ws = torch.matmul(rot, c2ws)

            # rotate normals
            N, _, H, W = normals.shape
            normals = normals * 2.0 - 1.0
            normals = torch.matmul(rot[:, :3, :3], normals.view(N, 3, -1)).view(N, 3, H, W)
            normals = F.normalize(normals, dim=1)
            normals = (normals + 1.0) / 2.0
            normals = torch.lerp(torch.zeros_like(normals), normals, alphas)

        # random scaling
        if np.random.rand() < 0.5:
            scale = np.random.uniform(0.8, 1.0)
            c2ws[:, :3, 3] *= scale
            depths *= scale

        # instrinsics of perspective cameras
        K = FOV_to_intrinsics(self.fov)
        Ks = K.unsqueeze(0).repeat(self.input_view_num + self.target_view_num, 1, 1).float()

        data = {
            'input_images': images[:self.input_view_num],     # (6, 3, H, W)
            'input_alphas': alphas[:self.input_view_num],           # (6, 1, H, W) 
            'input_depths': depths[:self.input_view_num],           # (6, 1, H, W)
            'input_normals': normals[:self.input_view_num],         # (6, 3, H, W)
            'input_c2ws': c2ws_input[:self.input_view_num],         # (6, 4, 4)
            'input_Ks': Ks[:self.input_view_num],                   # (6, 3, 3)

            # lrm generator input and supervision
            'target_images': images[self.input_view_num:],          # (V, 3, H, W)
            'target_alphas': alphas[self.input_view_num:],          # (V, 1, H, W)
            'target_depths': depths[self.input_view_num:],          # (V, 1, H, W)
            'target_normals': normals[self.input_view_num:],        # (V, 3, H, W)
            'target_c2ws': c2ws[self.input_view_num:],              # (V, 4, 4)
            'target_Ks': Ks[self.input_view_num:],                  # (V, 3, 3)

            'depth_available': 1,
        }
        return data


class ValidationData(Dataset):
    def __init__(self,
        root_dir='objaverse/',
        input_view_num=6,
        input_image_size=256,
        fov=50,
    ):
        self.root_dir = Path(root_dir)
        self.input_view_num = input_view_num
        self.input_image_size = input_image_size
        self.fov = fov

        self.paths = sorted(os.listdir(self.root_dir))
        print('============= length of dataset %d =============' % len(self.paths))

        cam_distance = 2.5
        azimuths = np.array([30, 90, 150, 210, 270, 330])
        elevations = np.array([30, -20, 30, -20, 30, -20])
        azimuths = np.deg2rad(azimuths)
        elevations = np.deg2rad(elevations)

        x = cam_distance * np.cos(elevations) * np.cos(azimuths)
        y = cam_distance * np.cos(elevations) * np.sin(azimuths)
        z = cam_distance * np.sin(elevations)

        cam_locations = np.stack([x, y, z], axis=-1)
        cam_locations = torch.from_numpy(cam_locations).float()
        c2ws = center_looking_at_camera_pose(cam_locations)
        self.c2ws = c2ws.float()
        self.Ks = FOV_to_intrinsics(self.fov).unsqueeze(0).repeat(6, 1, 1).float()

        render_c2ws = get_surrounding_views(M=8, radius=cam_distance)
        render_Ks = FOV_to_intrinsics(self.fov).unsqueeze(0).repeat(render_c2ws.shape[0], 1, 1)
        self.render_c2ws = render_c2ws.float()
        self.render_Ks = render_Ks.float()

    def __len__(self):
        return len(self.paths)

    def load_im(self, path, color):
        '''
        replace background pixel with random color in rendering
        '''
        pil_img = Image.open(path)
        pil_img = pil_img.resize((self.input_image_size, self.input_image_size), resample=Image.BICUBIC)

        image = np.asarray(pil_img, dtype=np.float32) / 255.
        if image.shape[-1] == 4:
            alpha = image[:, :, 3:]
            image = image[:, :, :3] * alpha + color * (1 - alpha)
        else:
            alpha = np.ones_like(image[:, :, :1])

        image = torch.from_numpy(image).permute(2, 0, 1).contiguous().float()
        alpha = torch.from_numpy(alpha).permute(2, 0, 1).contiguous().float()
        return image, alpha
    
    def __getitem__(self, index):
        # load data
        input_image_path = os.path.join(self.root_dir, self.paths[index])

        '''background color, default: white'''
        # color = np.random.uniform(0.48, 0.52)
        bkg_color = [1.0, 1.0, 1.0]

        image_list = []
        alpha_list = []

        for idx in range(self.input_view_num):
            image, alpha = self.load_im(os.path.join(input_image_path, f'{idx:03d}.png'), bkg_color)
            image_list.append(image)
            alpha_list.append(alpha)
        
        images = torch.stack(image_list, dim=0).float()                     # (6+V, 3, H, W)
        alphas = torch.stack(alpha_list, dim=0).float()                 # (6+V, 1, H, W)

        data = {
            'input_images': images,                 # (6, 3, H, W)
            'input_alphas': alphas,             # (6, 1, H, W)
            'input_c2ws': self.c2ws,            # (6, 4, 4)
            'input_Ks': self.Ks,                # (6, 3, 3)

            'render_c2ws': self.render_c2ws,
            'render_Ks': self.render_Ks,
        }
        return data