File size: 118,367 Bytes
d711508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

import collections
import inspect
import os
import warnings
from contextlib import contextmanager
from copy import deepcopy
from dataclasses import dataclass
from typing import Any, Literal, Optional, Union

import packaging.version
import torch
import transformers
from accelerate import dispatch_model, infer_auto_device_map
from accelerate.hooks import AlignDevicesHook, add_hook_to_module, remove_hook_from_submodules
from accelerate.utils import get_balanced_memory, named_module_tensors
from huggingface_hub import ModelCard, ModelCardData, hf_hub_download
from safetensors import safe_open
from safetensors.torch import save_file as safe_save_file
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers import PreTrainedModel
from transformers.modeling_outputs import QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput
from transformers.utils import PushToHubMixin

from . import __version__
from .config import PeftConfig
from .tuners import (
    AdaLoraModel,
    AdaptionPromptModel,
    BOFTModel,
    IA3Model,
    LNTuningModel,
    LoHaModel,
    LoKrModel,
    LoraModel,
    MultitaskPromptEmbedding,
    OFTModel,
    PolyModel,
    PrefixEncoder,
    PromptEmbedding,
    PromptEncoder,
    VeraModel,
)
from .tuners.tuners_utils import BaseTuner, BaseTunerLayer
from .utils import (
    SAFETENSORS_WEIGHTS_NAME,
    TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING,
    WEIGHTS_NAME,
    PeftType,
    TaskType,
    _get_batch_size,
    _prepare_prompt_learning_config,
    _set_adapter,
    _set_trainable,
    get_peft_model_state_dict,
    id_tensor_storage,
    infer_device,
    load_peft_weights,
    set_peft_model_state_dict,
    shift_tokens_right,
)


PEFT_TYPE_TO_MODEL_MAPPING = {
    PeftType.LORA: LoraModel,
    PeftType.LOHA: LoHaModel,
    PeftType.LOKR: LoKrModel,
    PeftType.PROMPT_TUNING: PromptEmbedding,
    PeftType.P_TUNING: PromptEncoder,
    PeftType.PREFIX_TUNING: PrefixEncoder,
    PeftType.ADALORA: AdaLoraModel,
    PeftType.BOFT: BOFTModel,
    PeftType.ADAPTION_PROMPT: AdaptionPromptModel,
    PeftType.IA3: IA3Model,
    PeftType.OFT: OFTModel,
    PeftType.POLY: PolyModel,
    PeftType.LN_TUNING: LNTuningModel,
    PeftType.VERA: VeraModel,
}


class PeftModel(PushToHubMixin, torch.nn.Module):
    """
    Base model encompassing various Peft methods.

    Args:
        model ([`~transformers.PreTrainedModel`]): The base transformer model used for Peft.
        peft_config ([`PeftConfig`]): The configuration of the Peft model.
        adapter_name (`str`,  *optional*): The name of the adapter, defaults to `"default"`.

    **Attributes**:
        - **base_model** ([`torch.nn.Module`]) -- The base transformer model used for Peft.
        - **peft_config** ([`PeftConfig`]) -- The configuration of the Peft model.
        - **modules_to_save** (`list` of `str`) -- The list of sub-module names to save when
            saving the model.
        - **prompt_encoder** ([`PromptEncoder`]) -- The prompt encoder used for Peft if
            using [`PromptLearningConfig`].
        - **prompt_tokens** (`torch.Tensor`) -- The virtual prompt tokens used for Peft if
            using [`PromptLearningConfig`].
        - **transformer_backbone_name** (`str`) -- The name of the transformer
            backbone in the base model if using [`PromptLearningConfig`].
        - **word_embeddings** (`torch.nn.Embedding`) -- The word embeddings of the transformer backbone
            in the base model if using [`PromptLearningConfig`].
    """

    def __init__(self, model: PreTrainedModel, peft_config: PeftConfig, adapter_name: str = "default") -> None:
        super().__init__()
        self.modules_to_save = None
        self.active_adapter = adapter_name
        self.peft_type = peft_config.peft_type
        # These args are special PEFT arguments that users can pass. They need to be removed before passing them to
        # forward.
        self.special_peft_forward_args = {"adapter_names"}

        self._is_prompt_learning = peft_config.is_prompt_learning
        if self._is_prompt_learning:
            self._peft_config = {adapter_name: peft_config}
            self.base_model = model
            self.add_adapter(adapter_name, peft_config)
        else:
            self._peft_config = None
            cls = PEFT_TYPE_TO_MODEL_MAPPING[peft_config.peft_type]
            self.base_model = cls(model, {adapter_name: peft_config}, adapter_name)
            self.set_additional_trainable_modules(peft_config, adapter_name)

        if getattr(model, "is_gradient_checkpointing", True):
            model = self._prepare_model_for_gradient_checkpointing(model)

        # the `pretraining_tp` is set for some models to simulate Tensor Parallelism during inference to avoid
        # numerical differences, https://github.com/pytorch/pytorch/issues/76232 - to avoid any unexpected
        # behavior we disable that in this line.
        if hasattr(self.base_model, "config") and hasattr(self.base_model.config, "pretraining_tp"):
            self.base_model.config.pretraining_tp = 1

    @property
    def peft_config(self) -> dict[str, PeftConfig]:
        if self._is_prompt_learning:
            return self._peft_config
        return self.base_model.peft_config

    @property
    def active_adapters(self) -> list[str]:
        try:
            adapters = self.base_model.active_adapters
        except AttributeError:
            adapters = self.active_adapter
            if isinstance(adapters, str):
                adapters = [adapters]
        return adapters

    @peft_config.setter
    def peft_config(self, value: dict[str, PeftConfig]):
        if self._is_prompt_learning:
            self._peft_config = value
        else:
            self.base_model.peft_config = value

    def save_pretrained(
        self,
        save_directory: str,
        safe_serialization: bool = True,
        selected_adapters: Optional[list[str]] = None,
        save_embedding_layers: Union[str, bool] = "auto",
        is_main_process: bool = True,
        convert_pissa_to_lora: Optional[str] = None,
        **kwargs: Any,
    ) -> None:
        r"""
        This function saves the adapter model and the adapter configuration files to a directory, so that it can be
        reloaded using the [`PeftModel.from_pretrained`] class method, and also used by the [`PeftModel.push_to_hub`]
        method.

        Args:
            save_directory (`str`):
                Directory where the adapter model and configuration files will be saved (will be created if it does not
                exist).
            safe_serialization (`bool`, *optional*):
                Whether to save the adapter files in safetensors format, defaults to `True`.
            selected_adapters (`List[str]`,  *optional*):
                A list of adapters to be saved. If `None`, will default to all adapters.
            save_embedding_layers (`Union[bool, str]`, *optional*, defaults to `"auto"`):
                If `True`, save the embedding layers in addition to adapter weights. If `auto`, checks the common
                embedding layers `peft.utils.other.EMBEDDING_LAYER_NAMES` in config's `target_modules` when available.
                and automatically sets the boolean flag. This only works for 🤗 transformers models.
            is_main_process (`bool`, *optional*):
                Whether the process calling this is the main process or not. Will default to `True`. Will not save the
                checkpoint if not on the main process, which is important for multi device setups (e.g. DDP).
            convert_pissa_to_lora (`str`):
                The path to the initialized PiSSA adapter, which is obtained after initializing the model with PiSSA
                and before performing any training. When `convert_pissa_to_lora` is not None, the difference in PISSA
                before and after fine-tuning is calculated. This difference can be represented as the parameters of a
                of a standard LoRA adapter. Using this converted adapter does not require changes to the base model,
                thus conveniently allowing the use of multiple PISSA and LoRA adapters, and the activation or
                deactivation of any adapters.
            kwargs (additional keyword arguments, *optional*):
                Additional keyword arguments passed along to the `push_to_hub` method.
        """
        if os.path.isfile(save_directory):
            raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file")

        if selected_adapters is None:
            selected_adapters = list(self.peft_config.keys())
        else:
            if any(
                selected_adapter_name not in list(self.peft_config.keys())
                for selected_adapter_name in selected_adapters
            ):
                raise ValueError(
                    f"You passed an invalid `selected_adapters` arguments, current supported adapter names are"
                    f" {list(self.peft_config.keys())} - got {selected_adapters}."
                )

        def save_pissa_as_lora(peft_config, convert_pissa_to_lora, output_state_dict, kwargs):
            if not str(peft_config.init_lora_weights).startswith("pissa"):
                warnings.warn("`convert_pissa_to_lora` only works for converting a PiSSA adapter to a LoRA adapter")
            initial_adapter = os.path.basename(convert_pissa_to_lora)
            self.load_adapter(
                os.path.dirname(convert_pissa_to_lora), subfolder=initial_adapter, adapter_name=initial_adapter
            )
            if str(self.peft_config[initial_adapter].init_lora_weights).startswith("pissa"):
                raise ValueError(
                    "The `init_lora_weights` parameter of the initial PiSSA adapter should be set to `True`. "
                    "Otherwise, `self.load_adapter` will subtract the principal singular value and vector again based on the residual model."
                )
            output_state_dict = self.base_model.subtract_pissa_init(output_state_dict, initial_adapter, kwargs)
            self.delete_adapter(adapter_name)
            return output_state_dict

        if is_main_process:
            os.makedirs(save_directory, exist_ok=True)
            self.create_or_update_model_card(save_directory)

        for adapter_name in selected_adapters:
            peft_config = self.peft_config[adapter_name]
            # save only the trainable weights
            output_state_dict = get_peft_model_state_dict(
                self,
                state_dict=kwargs.get("state_dict", None),
                adapter_name=adapter_name,
                save_embedding_layers=save_embedding_layers,
            )
            output_dir = os.path.join(save_directory, adapter_name) if adapter_name != "default" else save_directory
            os.makedirs(output_dir, exist_ok=True)

            if is_main_process and safe_serialization:
                # Section copied from: https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_utils.py#L2111-L2134
                # Safetensors does not allow tensor aliasing.
                # We're going to remove aliases before saving
                ptrs = collections.defaultdict(list)
                for name, tensor in output_state_dict.items():
                    # Sometimes in the state_dict we have non-tensor objects.
                    # e.g. in bitsandbytes we have some `str` objects in the state_dict
                    if isinstance(tensor, torch.Tensor):
                        ptrs[id_tensor_storage(tensor)].append(name)
                    else:
                        # In the non-tensor case, fall back to the pointer of the object itself
                        ptrs[id(tensor)].append(name)

                # These are all the pointers of shared tensors.
                shared_ptrs = {ptr: names for ptr, names in ptrs.items() if len(names) > 1}

                for _, names in shared_ptrs.items():
                    # Here we just clone the shared tensors to avoid tensor aliasing which is
                    # not supported in safetensors.
                    for shared_tensor_name in names[1:]:
                        output_state_dict[shared_tensor_name] = output_state_dict[shared_tensor_name].clone()
                if convert_pissa_to_lora is not None:
                    output_state_dict = save_pissa_as_lora(
                        peft_config, convert_pissa_to_lora, output_state_dict, kwargs
                    )
                safe_save_file(
                    output_state_dict,
                    os.path.join(output_dir, SAFETENSORS_WEIGHTS_NAME),
                    metadata={"format": "pt"},
                )
            elif is_main_process:
                if convert_pissa_to_lora is not None:
                    output_state_dict = save_pissa_as_lora(
                        peft_config, convert_pissa_to_lora, output_state_dict, kwargs
                    )
                torch.save(output_state_dict, os.path.join(output_dir, WEIGHTS_NAME))

            # save the config and change the inference mode to `True`
            if peft_config.base_model_name_or_path is None:
                peft_config.base_model_name_or_path = (
                    self.base_model.__dict__.get("name_or_path", None)
                    if peft_config.is_prompt_learning
                    else self.base_model.model.__dict__.get("name_or_path", None)
                )
            inference_mode = peft_config.inference_mode
            peft_config.inference_mode = True

            if peft_config.task_type is None:
                # deal with auto mapping
                base_model_class = self._get_base_model_class(
                    is_prompt_tuning=peft_config.is_prompt_learning,
                )
                parent_library = base_model_class.__module__

                auto_mapping_dict = {
                    "base_model_class": base_model_class.__name__,
                    "parent_library": parent_library,
                }
            else:
                auto_mapping_dict = None

            if is_main_process:
                if convert_pissa_to_lora is not None:
                    peft_config.init_lora_weights = True
                    peft_config.r *= 2
                    peft_config.lora_alpha *= 2
                peft_config.save_pretrained(output_dir, auto_mapping_dict=auto_mapping_dict)
            peft_config.inference_mode = inference_mode

    @classmethod
    def from_pretrained(
        cls,
        model: torch.nn.Module,
        model_id: Union[str, os.PathLike],
        adapter_name: str = "default",
        is_trainable: bool = False,
        config: Optional[PeftConfig] = None,
        **kwargs: Any,
    ) -> PeftModel:
        r"""
        Instantiate a PEFT model from a pretrained model and loaded PEFT weights.

        Note that the passed `model` may be modified inplace.

        Args:
            model ([`torch.nn.Module`]):
                The model to be adapted. For 🤗 Transformers models, the model should be initialized with the
                [`~transformers.PreTrainedModel.from_pretrained`].
            model_id (`str` or `os.PathLike`):
                The name of the PEFT configuration to use. Can be either:
                    - A string, the `model id` of a PEFT configuration hosted inside a model repo on the Hugging Face
                      Hub.
                    - A path to a directory containing a PEFT configuration file saved using the `save_pretrained`
                      method (`./my_peft_config_directory/`).
            adapter_name (`str`, *optional*, defaults to `"default"`):
                The name of the adapter to be loaded. This is useful for loading multiple adapters.
            is_trainable (`bool`, *optional*, defaults to `False`):
                Whether the adapter should be trainable or not. If `False`, the adapter will be frozen and can only be
                used for inference.
            config ([`~peft.PeftConfig`], *optional*):
                The configuration object to use instead of an automatically loaded configuration. This configuration
                object is mutually exclusive with `model_id` and `kwargs`. This is useful when configuration is already
                loaded before calling `from_pretrained`.
            kwargs: (`optional`):
                Additional keyword arguments passed along to the specific PEFT configuration class.
        """
        from .mapping import MODEL_TYPE_TO_PEFT_MODEL_MAPPING, PEFT_TYPE_TO_CONFIG_MAPPING

        # load the config
        if config is None:
            config = PEFT_TYPE_TO_CONFIG_MAPPING[
                PeftConfig._get_peft_type(
                    model_id,
                    subfolder=kwargs.get("subfolder", None),
                    revision=kwargs.get("revision", None),
                    cache_dir=kwargs.get("cache_dir", None),
                    use_auth_token=kwargs.get("use_auth_token", None),
                    token=kwargs.get("token", None),
                )
            ].from_pretrained(model_id, **kwargs)
        elif isinstance(config, PeftConfig):
            config.inference_mode = not is_trainable
        else:
            raise ValueError(f"The input config must be a PeftConfig, got {config.__class__}")

        if hasattr(model, "hf_device_map"):
            weight_map = dict(named_module_tensors(model, recurse=True))

            # recreate the offload_index for disk-offloaded modules: we need to know the location in storage of each weight
            # before the offload hook is removed from the model
            disk_modules = set()
            index = None
            for name, module in model.named_modules():
                if hasattr(module, "_hf_hook") and hasattr(module._hf_hook, "original_devices"):
                    if hasattr(module._hf_hook.weights_map, "dataset"):
                        index = module._hf_hook.weights_map.dataset.index
                    for key in module._hf_hook.original_devices.keys():
                        if module._hf_hook.original_devices[key] == torch.device("meta"):
                            disk_modules.add(str(name) + "." + str(key))

            if disk_modules and not kwargs.get("use_safetensors", True):
                raise ValueError("Disk offloading currently only supported for safetensors")

            if index:
                offload_index = {
                    p: {
                        "safetensors_file": index[p]["safetensors_file"],
                        "weight_name": p,
                        "dtype": str(weight_map[p].dtype).replace("torch.", ""),
                    }
                    for p in weight_map.keys()
                    if p in disk_modules
                }
                kwargs["offload_index"] = offload_index

        if (getattr(model, "hf_device_map", None) is not None) and len(
            set(model.hf_device_map.values()).intersection({"cpu", "disk"})
        ) > 0:
            remove_hook_from_submodules(model)

        if config.is_prompt_learning and is_trainable:
            raise ValueError("Cannot set a prompt learning adapter to trainable when loading pretrained adapter.")
        else:
            config.inference_mode = not is_trainable

        if config.task_type not in MODEL_TYPE_TO_PEFT_MODEL_MAPPING.keys():
            model = cls(model, config, adapter_name)
        else:
            model = MODEL_TYPE_TO_PEFT_MODEL_MAPPING[config.task_type](model, config, adapter_name)
        model.load_adapter(model_id, adapter_name, is_trainable=is_trainable, **kwargs)
        return model

    def _setup_prompt_encoder(self, adapter_name: str):
        config = self.peft_config[adapter_name]
        if not hasattr(self, "prompt_encoder"):
            self.prompt_encoder = torch.nn.ModuleDict({})
            self.prompt_tokens = {}
        transformer_backbone = None
        for name, module in self.base_model.named_children():
            for param in module.parameters():
                param.requires_grad = False
            if isinstance(module, PreTrainedModel):
                # Make sure to freeze Tranformers model
                if transformer_backbone is None:
                    transformer_backbone = module
                    self.transformer_backbone_name = name
        if transformer_backbone is None:
            transformer_backbone = self.base_model

        if config.num_transformer_submodules is None:
            config.num_transformer_submodules = 2 if config.task_type == TaskType.SEQ_2_SEQ_LM else 1

        for named_param, value in list(transformer_backbone.named_parameters()):
            # for ZeRO-3, the tensor is sharded across accelerators and deepspeed modifies it to a tensor with shape [0]
            # the actual unsharded shape is stored in "ds_shape" attribute
            # special handling is needed in case the model is initialized in deepspeed.zero.Init() context or HfDeepSpeedConfig
            # has been called before
            # For reference refer to issue: https://github.com/huggingface/peft/issues/996
            deepspeed_distributed_tensor_shape = getattr(value, "ds_shape", None)

            if value.shape[0] == self.base_model.config.vocab_size or (
                deepspeed_distributed_tensor_shape is not None
                and deepspeed_distributed_tensor_shape[0] == self.base_model.config.vocab_size
            ):
                self.word_embeddings = transformer_backbone.get_submodule(named_param.replace(".weight", ""))
                break

        if config.peft_type == PeftType.PROMPT_TUNING:
            prompt_encoder = PromptEmbedding(config, self.word_embeddings)
        elif config.peft_type == PeftType.MULTITASK_PROMPT_TUNING:
            prompt_encoder = MultitaskPromptEmbedding(config, self.word_embeddings)
        elif config.peft_type == PeftType.P_TUNING:
            prompt_encoder = PromptEncoder(config)
        elif config.peft_type == PeftType.PREFIX_TUNING:
            prompt_encoder = PrefixEncoder(config)
        else:
            raise ValueError("Not supported")

        prompt_encoder = prompt_encoder.to(self.device)
        self.prompt_encoder.update(torch.nn.ModuleDict({adapter_name: prompt_encoder}))
        self.prompt_tokens[adapter_name] = torch.arange(
            config.num_virtual_tokens * config.num_transformer_submodules
        ).long()

    def _prepare_model_for_gradient_checkpointing(self, model: PreTrainedModel):
        r"""
        Prepares the model for gradient checkpointing if necessary
        """
        if not (
            getattr(model, "is_loaded_in_8bit", False)
            or getattr(model, "is_loaded_in_4bit", False)
            or getattr(model, "is_quantized", False)
        ):
            if hasattr(model, "enable_input_require_grads"):
                model.enable_input_require_grads()
            elif hasattr(model, "get_input_embeddings"):

                def make_inputs_require_grad(module, input, output):
                    output.requires_grad_(True)

                model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
        return model

    def get_prompt_embedding_to_save(self, adapter_name: str) -> torch.Tensor:
        """
        Returns the prompt embedding to save when saving the model. Only applicable when using a prompt learning
        method.
        """
        prompt_encoder = self.prompt_encoder[adapter_name]
        prompt_tokens = (
            self.prompt_tokens[adapter_name].unsqueeze(0).expand(1, -1).to(prompt_encoder.embedding.weight.device)
        )
        if self.peft_config[adapter_name].peft_type == PeftType.PREFIX_TUNING:
            prompt_tokens = prompt_tokens[:, : self.peft_config[adapter_name].num_virtual_tokens]

        if self.peft_config[adapter_name].peft_type == PeftType.MULTITASK_PROMPT_TUNING:
            prompt_embeddings = super(MultitaskPromptEmbedding, prompt_encoder).forward(prompt_tokens)
        else:
            prompt_embeddings = prompt_encoder(prompt_tokens)

        return prompt_embeddings[0].detach().cpu()

    def get_prompt(self, batch_size: int, task_ids: Optional[torch.Tensor] = None) -> torch.Tensor:
        """
        Returns the virtual prompts to use for Peft. Only applicable when using a prompt learning method.
        """
        peft_config = self.active_peft_config
        prompt_encoder = self.prompt_encoder[self.active_adapter]
        prompt_tokens = (
            self.prompt_tokens[self.active_adapter]
            .unsqueeze(0)
            .expand(batch_size, -1)
            .to(prompt_encoder.embedding.weight.device)
        )
        if peft_config.peft_type == PeftType.PREFIX_TUNING:
            prompt_tokens = prompt_tokens[:, : peft_config.num_virtual_tokens]
            if peft_config.inference_mode:
                past_key_values = prompt_encoder.embedding.weight.repeat(batch_size, 1, 1)
            else:
                past_key_values = prompt_encoder(prompt_tokens)
            if self.base_model_torch_dtype is not None:
                past_key_values = past_key_values.to(self.base_model_torch_dtype)
            past_key_values = past_key_values.view(
                batch_size,
                peft_config.num_virtual_tokens,
                peft_config.num_layers * 2,
                peft_config.num_attention_heads,
                peft_config.token_dim // peft_config.num_attention_heads,
            )
            if peft_config.num_transformer_submodules == 2:
                past_key_values = torch.cat([past_key_values, past_key_values], dim=2)
            past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(
                peft_config.num_transformer_submodules * 2
            )
            if TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING.get(self.config.model_type, None) is not None:
                post_process_fn = TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING[self.config.model_type]
                past_key_values = post_process_fn(past_key_values)
            return past_key_values
        else:
            if peft_config.peft_type == PeftType.MULTITASK_PROMPT_TUNING:
                prompts = prompt_encoder(prompt_tokens, task_ids)
            else:
                if peft_config.inference_mode:
                    prompts = prompt_encoder.embedding.weight.repeat(batch_size, 1, 1)
                else:
                    prompts = prompt_encoder(prompt_tokens)
            return prompts

    def get_nb_trainable_parameters(self) -> tuple[int, int]:
        r"""
        Returns the number of trainable parameters and the number of all parameters in the model.
        """
        trainable_params = 0
        all_param = 0
        for _, param in self.named_parameters():
            num_params = param.numel()
            # if using DS Zero 3 and the weights are initialized empty
            if num_params == 0 and hasattr(param, "ds_numel"):
                num_params = param.ds_numel

            # Due to the design of 4bit linear layers from bitsandbytes
            # one needs to multiply the number of parameters by 2 to get
            # the correct number of parameters
            if param.__class__.__name__ == "Params4bit":
                if hasattr(param, "element_size"):
                    num_bytes = param.element_size()
                elif not hasattr(param, "quant_storage"):
                    num_bytes = 1
                else:
                    num_bytes = param.quant_storage.itemsize
                num_params = num_params * 2 * num_bytes

            all_param += num_params
            if param.requires_grad:
                trainable_params += num_params

        return trainable_params, all_param

    def print_trainable_parameters(self) -> None:
        """
        Prints the number of trainable parameters in the model.

        Note: print_trainable_parameters() uses get_nb_trainable_parameters() which is different from
        num_parameters(only_trainable=True) from huggingface/transformers. get_nb_trainable_parameters() returns
        (trainable parameters, all parameters) of the Peft Model which includes modified backbone transformer model.
        For techniques like LoRA, the backbone transformer model is modified in place with LoRA modules. However, for
        prompt tuning, the backbone transformer model is unmodified. num_parameters(only_trainable=True) returns number
        of trainable parameters of the backbone transformer model which can be different.
        """
        trainable_params, all_param = self.get_nb_trainable_parameters()

        print(
            f"trainable params: {trainable_params:,d} || all params: {all_param:,d} || trainable%: {100 * trainable_params / all_param:.4f}"
        )

    def __getattr__(self, name: str):
        """Forward missing attributes to the wrapped module."""
        try:
            return super().__getattr__(name)  # defer to nn.Module's logic
        except AttributeError:
            return getattr(self.base_model, name)

    @contextmanager
    def _enable_peft_forward_hooks(self, *args, **kwargs):
        # If the base model has a method called _enable_peft_forward_hooks, it is invoked as a context. Otherwise, this
        # runs without any changes
        if hasattr(self.base_model, "_enable_peft_forward_hooks"):
            with self.base_model._enable_peft_forward_hooks(*args, **kwargs):
                yield
            return
        else:
            # nothing to enable
            yield
            return

    def forward(self, *args: Any, **kwargs: Any):
        """
        Forward pass of the model.
        """
        with self._enable_peft_forward_hooks(*args, **kwargs):
            kwargs = {k: v for k, v in kwargs.items() if k not in self.special_peft_forward_args}
            return self.get_base_model()(*args, **kwargs)

    def generate(self, *args, **kwargs):
        with self._enable_peft_forward_hooks(*args, **kwargs):
            kwargs = {k: v for k, v in kwargs.items() if k not in self.special_peft_forward_args}
            return self.get_base_model().generate(*args, **kwargs)

    def _get_base_model_class(self, is_prompt_tuning=False):
        """
        Returns the base model class.
        """
        if not is_prompt_tuning:
            return self.base_model.model.__class__
        return self.base_model.__class__

    @contextmanager
    def disable_adapter(self):
        """
        Context manager that disables the adapter module. Use this to run inference on the base model.

        Example:

        ```py
        >>> with model.disable_adapter():
        ...     model(inputs)
        ```
        """
        if self.peft_config[self.active_adapter].is_prompt_learning:
            try:
                # TODO: consider replacing this patching of methods with a more robust mechanism: setting a flag and
                # letting the underlying methods deal with it, same as how LoRA does it.
                old_forward = self.forward
                self.forward = self.base_model.forward
                old_prepare_inputs_for_generation = self.prepare_inputs_for_generation
                self.prepare_inputs_for_generation = self.base_model.prepare_inputs_for_generation
                yield
            finally:
                self.forward = old_forward
                self.prepare_inputs_for_generation = old_prepare_inputs_for_generation

        elif self.peft_config[self.active_adapter].is_adaption_prompt:
            try:
                self.base_model.disable_adapter_layers()
                yield
            finally:
                self.base_model.enable_adapter_layers()

        else:  # LoRA, LoHa, etc.
            model_status = self.get_model_status()
            if model_status.enabled == "irregular":
                warnings.warn(
                    "The model contains some adapter layers that are enabled and others that are disabled. "
                    "This is most likely unintentional. After exiting the disable_adapter context, all adapters "
                    "will be enabled"
                )
            try:
                self.base_model.disable_adapter_layers()
                yield
            finally:
                if model_status.enabled is not False:
                    # model_status.enabled is `True` or `"irregular"`
                    self.base_model.enable_adapter_layers()

    def get_base_model(self) -> torch.nn.Module:
        """
        Returns the base model.
        """
        return (
            self.base_model
            if (self.active_peft_config.is_prompt_learning or self.peft_type == PeftType.POLY)
            else self.base_model.model
        )

    def add_adapter(self, adapter_name: str, peft_config: PeftConfig) -> None:
        """
        Add an adapter to the model based on the passed configuration.

        This adapter is not trained. To load a trained adapter, check out [`PeftModel.load_adapter`].

        The name for the new adapter should be unique.

        The new adapter is not automatically set as the active adapter. Use [`PeftModel.set_adapter`] to set the active
        adapter.

        Args:
            adapter_name (`str`):
                The name of the adapter to be added.
            peft_config ([`PeftConfig`]):
                The configuration of the adapter to be added.
        """
        if peft_config.peft_type != self.peft_type:
            raise ValueError(
                f"Cannot combine adapters with different peft types. "
                f"Found {self.peft_type} and {peft_config.peft_type}."
            )

        try:
            if peft_config.is_prompt_learning:
                self.peft_config[adapter_name] = peft_config
                if hasattr(self.config, "to_dict"):
                    dict_config = self.config.to_dict()
                else:
                    dict_config = self.config

                peft_config = _prepare_prompt_learning_config(peft_config, dict_config)
                self._setup_prompt_encoder(adapter_name)
            elif peft_config.is_adaption_prompt:
                self.base_model.add_adapter(adapter_name, peft_config)
            else:
                self.peft_config[adapter_name] = peft_config
                self.base_model.inject_adapter(self.base_model.model, adapter_name)
        except Exception:  # something went wrong, roll back
            if adapter_name in self.peft_config:
                del self.peft_config[adapter_name]
            raise

        self.set_additional_trainable_modules(peft_config, adapter_name)

    def set_additional_trainable_modules(self, peft_config, adapter_name):
        if getattr(peft_config, "modules_to_save", None) is not None:
            if self.modules_to_save is None:
                self.modules_to_save = set(peft_config.modules_to_save)
            else:
                self.modules_to_save.update(peft_config.modules_to_save)
            _set_trainable(self, adapter_name)  # this may add a new ModulesToSaveWrapper

    def get_layer_status(self) -> list[TunerLayerStatus]:
        """Get the status of each adapter layer in the model.

        This method returns a list of `TunerLayerStatus` dataclass instances, each of which contains the following
        attributes:

        - `name` (`str`):
           The name of the adapter layer, e.g. `model.encoder.block.0.layer.0.SelfAttention.q`.
        - `module_type` (`str`):
           The type of the adapter layer, e.g. `lora.Linear`.
        - `enabled` (`bool`):
           Whether the adapter layer is enabled.
        - `active_adapters` (`list[str]`):
           The names of the active adapters, if any, e.g. `["default"]`.
        - `merged_adapters` (`list[str]`):
           The names of the merged adapters, if any, e.g. `["default"]`.
        - `available_adapters` (`list[str]`):
           The names of the available adapters, e.g. `["default"]`.

        Args:
            model ([`~PeftModel`]):
                The model to get the adapter layer status from.

        Returns:
            list[`peft.peft_model.TunerLayerStatus`]:
                A list of dataclasses, each containing the status of the corresponding adapter layer.

        """
        return get_layer_status(self)

    def get_model_status(self) -> TunerModelStatus:
        """Get the status of tuners of the model.

        This method returns a `TunerModelStatus` dataclass instance, which contains the following attributes:

        - `base_model_type` (`str`):
           The type of the base model, e.g. `T5Model`.
        - `adapter_model_type` (`str`):
           The type of the adapter model, e.g. `LoraModel`.
        - `peft_types` (`dict[str, str]`):
           The mapping of adapter name to adapter type, e.g. `{"default": "LORA"}`.
        - `trainable_params` (`int`):
           The number of trainable parameters in the model.
        - `total_params` (`int`):
           The total number of parameters in the model.
        - `num_adapter_layers` (`int`):
           The number of adapter layers in the model.
        - `enabled` (`bool`, `Literal["irregular"]`):
           Whether all adapter layers are enabled. If some are enabled and some are not, this will be `"irregular"`.
           This means that your model is in an inconsistent state and might not work as expected.
        - `active_adapters` (`list[str]`, `Literal["irregular"]`):
           The names of the active adapters. If the active adapters are not consistent across all layers, this will be
           `"irregular"`, which means that your model is in an inconsistent state and might not work as expected.
        - `merged_adapters` (`list[str]`, `Literal["irregular"]`):
           The names of the merged adapters. If the merged adapters are not consistent across all layers, this will be
           `"irregular"`, which means that your model is in an inconsistent state and might not work as expected.
        - `available_adapters` (`list[str]`):
           The names of the available adapters, e.g. `["default"]`.

        Args:
            model ([`~PeftModel`]):
                The model to get the adapter layer status from.

        Returns:
            `peft.peft_model.TunerModelStatus`:
                A dataclass containing the status of the model.

        """
        return get_model_status(self)

    @classmethod
    def _split_kwargs(cls, kwargs: dict[str, Any]):
        _kwargs_not_in_hf_hub_download_signature = ("use_auth_token",)
        hf_hub_download_kwargs = {}
        other_kwargs = {}

        for key, value in kwargs.items():
            if key in inspect.signature(hf_hub_download).parameters or key in _kwargs_not_in_hf_hub_download_signature:
                hf_hub_download_kwargs[key] = value
            else:
                other_kwargs[key] = value

        return hf_hub_download_kwargs, other_kwargs

    def _update_offload(self, offload_index: dict[str, dict[str, str]], adapters_weights: dict[str, torch.tensor]):
        """
        Update the offload_index and safetensors files for loading and mergine PeftModels with disk-offloaded modules.

        Args:
            offload_index (Dict[str: str]):
                Dictionary of disk-offloaded modules with their metadata and safetensors filenames
            adapters_weights (Dict[str: torch.tensor]):
                Dictionary of Peft adapter module names and weights
        """

        if not offload_index:
            return offload_index

        prefix = "base_model.model."
        # rename offload index weight and model names
        adapter_names = list(self.peft_config.keys())
        for adapter_name in adapter_names:
            keys = list(offload_index.keys())
            block_id = keys[0].split(".")[0] + "."  # for writing safetensors key,

            # replace original offload index keys with PeftModel keys
            for key in keys:
                suffix_pos = key.rfind(".")
                extended_prefix = prefix + key[:suffix_pos]
                module = dict(self.named_modules())[extended_prefix]
                if isinstance(module, BaseTunerLayer):
                    new_key = prefix + key[:suffix_pos] + ".base_layer" + key[suffix_pos:]
                else:
                    new_key = prefix + key
                offload_index[key]["weight_name"] = new_key
                offload_index[new_key] = offload_index[key]
                del offload_index[key]

            files_seen = set()
            # rename safetensors for dispatch
            for new_key in list(offload_index.keys()):
                fname = offload_index[new_key]["safetensors_file"]

                # make a new file name
                new_fname_list = list(fname.split(os.sep))
                for i, name in enumerate(new_fname_list):
                    if "--" in name:
                        new_fname_list[i] += "-peft"
                        break
                new_fname = os.path.join(*new_fname_list)

                if fname in files_seen:
                    continue
                safe_dict = {}
                with safe_open(fname, framework="pt") as f:
                    for safe_key in f.keys():
                        safe_tensor = f.get_tensor(safe_key)
                        metadata = f.metadata()
                        suffix_pos = safe_key.rfind(".")
                        extended_prefix = prefix + block_id + safe_key[:suffix_pos]
                        safe_module = dict(self.named_modules())[extended_prefix]
                        if isinstance(safe_module, BaseTunerLayer):
                            final_key = extended_prefix + ".base_layer" + safe_key[suffix_pos:]
                            lora_dict = {key: val for key, val in adapters_weights.items() if extended_prefix in key}

                            # add LoRA keys and values to disk offload
                            for lora_key, lora_val in lora_dict.items():
                                divide = lora_key.rfind(".")
                                new_key = lora_key[:divide] + f".{adapter_name}" + lora_key[divide:]
                                safe_dict[new_key] = lora_val
                        else:
                            final_key = prefix + block_id + safe_key
                        safe_dict[final_key] = safe_tensor
                    files_seen.add(new_fname)

                    # avoid overwriting original safetensors
                    for key in safe_dict.keys():
                        offload_index[key] = {"safetensors_file": new_fname, "weight_name": key}

                    base_name = os.path.dirname(new_fname)
                    if not os.path.exists(base_name):
                        os.makedirs(base_name)
                    safe_save_file(safe_dict, new_fname, metadata=metadata)

    def load_adapter(
        self,
        model_id: str,
        adapter_name: str,
        is_trainable: bool = False,
        torch_device: Optional[str] = None,
        **kwargs: Any,
    ):
        """
        Load a trained adapter into the model.

        The name for the new adapter should be unique.

        The new adapter is not automatically set as the active adapter. Use [`PeftModel.set_adapter`] to set the active
        adapter.

        Args:
            adapter_name (`str`):
                The name of the adapter to be added.
            peft_config ([`PeftConfig`]):
                The configuration of the adapter to be added.
            is_trainable (`bool`, *optional*, defaults to `False`):
                Whether the adapter should be trainable or not. If `False`, the adapter will be frozen and can only be
                used for inference.
            torch_device (`str`, *optional*, defaults to None):
                The device to load the adapter on. If `None`, the device will be inferred.
            kwargs: (`optional`):
                Additional arguments to modify the way the adapter is loaded, e.g. the token for Hugging Face Hub.
        """
        from .mapping import PEFT_TYPE_TO_CONFIG_MAPPING

        hf_hub_download_kwargs, kwargs = self._split_kwargs(kwargs)
        if torch_device is None:
            torch_device = infer_device()

        if adapter_name not in self.peft_config:
            # load the config
            peft_config = PEFT_TYPE_TO_CONFIG_MAPPING[
                PeftConfig._get_peft_type(
                    model_id,
                    **hf_hub_download_kwargs,
                )
            ].from_pretrained(
                model_id,
                **hf_hub_download_kwargs,
            )
            if peft_config.is_prompt_learning and is_trainable:
                raise ValueError("Cannot set a prompt learning adapter to trainable when loading pretrained adapter.")
            else:
                peft_config.inference_mode = not is_trainable
            self.add_adapter(adapter_name, peft_config)

        adapters_weights = load_peft_weights(model_id, device=torch_device, **hf_hub_download_kwargs)

        # load the weights into the model
        ignore_mismatched_sizes = kwargs.get("ignore_mismatched_sizes", False)
        load_result = set_peft_model_state_dict(
            self, adapters_weights, adapter_name=adapter_name, ignore_mismatched_sizes=ignore_mismatched_sizes
        )
        if (
            (getattr(self, "hf_device_map", None) is not None)
            and (len(set(self.hf_device_map.values()).intersection({"cpu", "disk"})) > 0)
            and len(self.peft_config) == 1
        ):
            device_map = kwargs.get("device_map", "auto")
            max_memory = kwargs.get("max_memory", None)
            offload_dir = kwargs.get("offload_folder", None)
            offload_index = kwargs.get("offload_index", None)

            dispatch_model_kwargs = {}
            # Safety checker for previous `accelerate` versions
            # `offload_index` was introduced in https://github.com/huggingface/accelerate/pull/873/
            if "offload_index" in inspect.signature(dispatch_model).parameters:
                dispatch_model_kwargs["offload_index"] = offload_index

            no_split_module_classes = self._no_split_modules

            if device_map != "sequential":
                max_memory = get_balanced_memory(
                    self,
                    max_memory=max_memory,
                    no_split_module_classes=no_split_module_classes,
                    low_zero=(device_map == "balanced_low_0"),
                )

            if isinstance(device_map, str):
                device_map = infer_auto_device_map(
                    self, max_memory=max_memory, no_split_module_classes=no_split_module_classes
                )

            self._update_offload(offload_index, adapters_weights)
            dispatch_model_kwargs["offload_index"] = offload_index

            dispatch_model(
                self,
                device_map=device_map,
                offload_dir=offload_dir,
                **dispatch_model_kwargs,
            )

            hook = AlignDevicesHook(io_same_device=True)
            if self.peft_config[adapter_name].is_prompt_learning:
                remove_hook_from_submodules(self.prompt_encoder)
            add_hook_to_module(self.get_base_model(), hook)

        # Set model in evaluation mode to deactivate Dropout modules by default
        if not is_trainable:
            self.eval()
        return load_result

    def set_adapter(self, adapter_name: str) -> None:
        """
        Sets the active adapter.

        Only one adapter can be active at a time.

        Additionally, this function will set the specified adapter to trainable (i.e., requires_grad=True). If this is
        not desired, use the following code.

        ```py
        >>> for name, param in model_peft.named_parameters():
        ...     if ...:  # some check on name (ex. if 'lora' in name)
        ...         param.requires_grad = False
        ```

        Args:
            adapter_name (`str`):
                The name of the adapter to be set as active. The adapter must be loaded first.
        """
        if adapter_name not in self.peft_config:
            raise ValueError(f"Adapter {adapter_name} not found.")
        self.active_adapter = adapter_name
        if not self.peft_config[adapter_name].is_prompt_learning:
            self.base_model.set_adapter(adapter_name)
        _set_adapter(self, adapter_name)

    @property
    def base_model_torch_dtype(self):
        return getattr(self.base_model, "dtype", None)

    @property
    def active_peft_config(self):
        return self.peft_config[self.active_adapter]

    def create_or_update_model_card(self, output_dir: str):
        """
        Updates or create model card to include information about peft:
        1. Adds `peft` library tag
        2. Adds peft version
        3. Adds base model info
        4. Adds quantization information if it was used
        """

        filename = os.path.join(output_dir, "README.md")

        card = ModelCard.load(filename) if os.path.exists(filename) else ModelCard.from_template(ModelCardData())

        card.data["library_name"] = "peft"

        model_config = getattr(self, "config", None)
        if hasattr(model_config, "to_dict"):
            model_config = model_config.to_dict()
        if model_config is not None and "_name_or_path" in model_config:
            card.data["base_model"] = model_config["_name_or_path"]

        lines = card.text.splitlines()

        quantization_config = None
        if hasattr(model_config, "quantization_config"):
            quantization_config = self.config.quantization_config.to_dict()
        training_config_text = ""
        quantization_prefix = "The following `bitsandbytes` quantization config was used during training:"
        # Adds quantization information if it was used
        if quantization_config is not None:
            training_config_text += f"\n{quantization_prefix}\n"
            training_config_text += "\n".join([f"- {name}: {value}" for name, value in quantization_config.items()])
            training_config_text += "\n"

        training_procedure_heading = "## Training procedure"
        if quantization_prefix not in lines and bool(training_config_text):
            if training_procedure_heading in lines:
                lines.insert(lines.index(training_procedure_heading) + 2, training_config_text)
            else:
                lines.append(f"{training_procedure_heading}\n{training_config_text}")

        # Adds peft version
        framework_block_heading = "### Framework versions"
        if f"- PEFT {__version__}" not in lines:
            if framework_block_heading in lines:
                lines.insert(lines.index(framework_block_heading) + 2, f"- PEFT {__version__}")
            else:
                lines.append(f"{framework_block_heading}\n\n- PEFT {__version__}")

        card.text = "\n".join(lines)
        card.save(filename)


class PeftModelForSequenceClassification(PeftModel):
    """
    Peft model for sequence classification tasks.

    Args:
        model ([`~transformers.PreTrainedModel`]): Base transformer model.
        peft_config ([`PeftConfig`]): Peft config.

    **Attributes**:
        - **config** ([`~transformers.PretrainedConfig`]) -- The configuration object of the base model.
        - **cls_layer_name** (`str`) -- The name of the classification layer.

    Example:

        ```py
        >>> from transformers import AutoModelForSequenceClassification
        >>> from peft import PeftModelForSequenceClassification, get_peft_config

        >>> config = {
        ...     "peft_type": "PREFIX_TUNING",
        ...     "task_type": "SEQ_CLS",
        ...     "inference_mode": False,
        ...     "num_virtual_tokens": 20,
        ...     "token_dim": 768,
        ...     "num_transformer_submodules": 1,
        ...     "num_attention_heads": 12,
        ...     "num_layers": 12,
        ...     "encoder_hidden_size": 768,
        ...     "prefix_projection": False,
        ...     "postprocess_past_key_value_function": None,
        ... }

        >>> peft_config = get_peft_config(config)
        >>> model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased")
        >>> peft_model = PeftModelForSequenceClassification(model, peft_config)
        >>> peft_model.print_trainable_parameters()
        trainable params: 370178 || all params: 108680450 || trainable%: 0.3406113979101117
        ```
    """

    def __init__(self, model: torch.nn.Module, peft_config: PeftConfig, adapter_name: str = "default") -> None:
        super().__init__(model, peft_config, adapter_name)

        classifier_module_names = ["classifier", "score"]
        if self.modules_to_save is None:
            self.modules_to_save = set(classifier_module_names)
        else:
            self.modules_to_save.update(classifier_module_names)

        if hasattr(peft_config, "modules_to_save"):
            if peft_config.modules_to_save is None:
                peft_config.modules_to_save = classifier_module_names[:]
            else:
                peft_config.modules_to_save.extend(classifier_module_names)

        for name, _ in self.base_model.named_children():
            if any(module_name in name for module_name in self.modules_to_save):
                self.cls_layer_name = name
                break

        # to make sure classifier layer is trainable; this may add a new ModulesToSaveWrapper
        _set_trainable(self, adapter_name)

    def add_adapter(self, adapter_name: str, peft_config: PeftConfig) -> None:
        """
        Add an adapter to the model based on the passed configuration.

        This adapter is not trained. To load a trained adapter, check out [`PeftModel.load_adapter`].

        The name for the new adapter should be unique.

        The new adapter is not automatically set as the active adapter. Use [`PeftModel.set_adapter`] to set the active
        adapter.

        Args:
            adapter_name (`str`):
                The name of the adapter to be added.
            peft_config ([`PeftConfig`]):
                The configuration of the adapter to be added.
        """
        # ensure that additional adapters also add the classifier layer to modules_to_save
        if hasattr(peft_config, "modules_to_save"):
            classifier_module_names = ["classifier", "score"]
            if peft_config.modules_to_save is None:
                peft_config.modules_to_save = classifier_module_names[:]
            else:
                peft_config.modules_to_save.extend(classifier_module_names)

        return super().add_adapter(adapter_name, peft_config)

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        task_ids=None,
        **kwargs,
    ):
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        peft_config = self.active_peft_config
        if not peft_config.is_prompt_learning:
            with self._enable_peft_forward_hooks(**kwargs):
                kwargs = {k: v for k, v in kwargs.items() if k not in self.special_peft_forward_args}
                if peft_config.peft_type == PeftType.POLY:
                    kwargs["task_ids"] = task_ids
                return self.base_model(
                    input_ids=input_ids,
                    attention_mask=attention_mask,
                    inputs_embeds=inputs_embeds,
                    labels=labels,
                    output_attentions=output_attentions,
                    output_hidden_states=output_hidden_states,
                    return_dict=return_dict,
                    **kwargs,
                )

        batch_size = _get_batch_size(input_ids, inputs_embeds)
        if attention_mask is not None:
            # concat prompt attention mask
            prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(attention_mask.device)
            attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
        if kwargs.get("position_ids", None) is not None:
            warnings.warn("Position ids are not supported for parameter efficient tuning. Ignoring position ids.")
            kwargs["position_ids"] = None
        kwargs.update(
            {
                "attention_mask": attention_mask,
                "labels": labels,
                "output_attentions": output_attentions,
                "output_hidden_states": output_hidden_states,
                "return_dict": return_dict,
            }
        )

        if peft_config.peft_type == PeftType.PREFIX_TUNING:
            return self._prefix_tuning_forward(input_ids=input_ids, **kwargs)
        else:
            if kwargs.get("token_type_ids", None) is not None:
                kwargs["token_type_ids"] = torch.cat(
                    (
                        torch.zeros(batch_size, peft_config.num_virtual_tokens).to(self.word_embeddings.weight.device),
                        kwargs["token_type_ids"],
                    ),
                    dim=1,
                ).long()
            if inputs_embeds is None:
                inputs_embeds = self.word_embeddings(input_ids)
            prompts = self.get_prompt(batch_size=batch_size, task_ids=task_ids)
            prompts = prompts.to(inputs_embeds.dtype)
            inputs_embeds = torch.cat((prompts, inputs_embeds), dim=1)
            return self.base_model(inputs_embeds=inputs_embeds, **kwargs)

    def _prefix_tuning_forward(
        self,
        input_ids=None,
        attention_mask=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        **kwargs,
    ):
        batch_size = _get_batch_size(input_ids, inputs_embeds)
        past_key_values = self.get_prompt(batch_size)
        fwd_params = list(inspect.signature(self.base_model.forward).parameters.keys())
        kwargs.update(
            {
                "input_ids": input_ids,
                "attention_mask": attention_mask,
                "inputs_embeds": inputs_embeds,
                "output_attentions": output_attentions,
                "output_hidden_states": output_hidden_states,
                "return_dict": return_dict,
                "past_key_values": past_key_values,
            }
        )
        if "past_key_values" in fwd_params:
            return self.base_model(labels=labels, **kwargs)
        else:
            transformer_backbone_name = self.base_model.get_submodule(self.transformer_backbone_name)
            fwd_params = list(inspect.signature(transformer_backbone_name.forward).parameters.keys())
            if "past_key_values" not in fwd_params:
                raise ValueError("Model does not support past key values which are required for prefix tuning.")
            outputs = transformer_backbone_name(**kwargs)
            pooled_output = outputs[1] if len(outputs) > 1 else outputs[0]
            if "dropout" in [name for name, _ in list(self.base_model.named_children())]:
                pooled_output = self.base_model.dropout(pooled_output)
            logits = self.base_model.get_submodule(self.cls_layer_name)(pooled_output)

            loss = None
            if labels is not None:
                if self.config.problem_type is None:
                    if self.base_model.num_labels == 1:
                        self.config.problem_type = "regression"
                    elif self.base_model.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                        self.config.problem_type = "single_label_classification"
                    else:
                        self.config.problem_type = "multi_label_classification"

                if self.config.problem_type == "regression":
                    loss_fct = MSELoss()
                    if self.base_model.num_labels == 1:
                        loss = loss_fct(logits.squeeze(), labels.squeeze())
                    else:
                        loss = loss_fct(logits, labels)
                elif self.config.problem_type == "single_label_classification":
                    loss_fct = CrossEntropyLoss()
                    loss = loss_fct(logits.view(-1, self.base_model.num_labels), labels.view(-1))
                elif self.config.problem_type == "multi_label_classification":
                    loss_fct = BCEWithLogitsLoss()
                    loss = loss_fct(logits, labels)
            if not return_dict:
                output = (logits,) + outputs[2:]
                return ((loss,) + output) if loss is not None else output

            return SequenceClassifierOutput(
                loss=loss,
                logits=logits,
                hidden_states=outputs.hidden_states,
                attentions=outputs.attentions,
            )


class PeftModelForCausalLM(PeftModel):
    """
    Peft model for causal language modeling.

    Args:
        model ([`~transformers.PreTrainedModel`]): Base transformer model.
        peft_config ([`PeftConfig`]): Peft config.


    Example:

        ```py
        >>> from transformers import AutoModelForCausalLM
        >>> from peft import PeftModelForCausalLM, get_peft_config

        >>> config = {
        ...     "peft_type": "PREFIX_TUNING",
        ...     "task_type": "CAUSAL_LM",
        ...     "inference_mode": False,
        ...     "num_virtual_tokens": 20,
        ...     "token_dim": 1280,
        ...     "num_transformer_submodules": 1,
        ...     "num_attention_heads": 20,
        ...     "num_layers": 36,
        ...     "encoder_hidden_size": 1280,
        ...     "prefix_projection": False,
        ...     "postprocess_past_key_value_function": None,
        ... }

        >>> peft_config = get_peft_config(config)
        >>> model = AutoModelForCausalLM.from_pretrained("gpt2-large")
        >>> peft_model = PeftModelForCausalLM(model, peft_config)
        >>> peft_model.print_trainable_parameters()
        trainable params: 1843200 || all params: 775873280 || trainable%: 0.23756456724479544
        ```
    """

    def __init__(self, model: torch.nn.Module, peft_config: PeftConfig, adapter_name: str = "default") -> None:
        super().__init__(model, peft_config, adapter_name)
        self.base_model_prepare_inputs_for_generation = self.base_model.prepare_inputs_for_generation

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        task_ids=None,
        **kwargs,
    ):
        peft_config = self.active_peft_config
        if not peft_config.is_prompt_learning:
            if self.base_model.config.model_type == "mpt":
                if inputs_embeds is not None:
                    raise AssertionError("forward in MPTForCausalLM does not support inputs_embeds")
                return self.base_model(
                    input_ids=input_ids,
                    attention_mask=attention_mask,
                    labels=labels,
                    output_attentions=output_attentions,
                    output_hidden_states=output_hidden_states,
                    return_dict=return_dict,
                    **kwargs,
                )

            if peft_config.peft_type == PeftType.POLY:
                kwargs["task_ids"] = task_ids

            with self._enable_peft_forward_hooks(**kwargs):
                kwargs = {k: v for k, v in kwargs.items() if k not in self.special_peft_forward_args}
                return self.base_model(
                    input_ids=input_ids,
                    attention_mask=attention_mask,
                    inputs_embeds=inputs_embeds,
                    labels=labels,
                    output_attentions=output_attentions,
                    output_hidden_states=output_hidden_states,
                    return_dict=return_dict,
                    **kwargs,
                )

        batch_size = _get_batch_size(input_ids, inputs_embeds)
        if attention_mask is not None:
            # concat prompt attention mask
            prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(attention_mask.device)
            attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)

        if kwargs.get("position_ids", None) is not None:
            warnings.warn("Position ids are not supported for parameter efficient tuning. Ignoring position ids.")
            kwargs["position_ids"] = None
        if kwargs.get("token_type_ids", None) is not None:
            warnings.warn("Token type ids are not supported for parameter efficient tuning. Ignoring token type ids")
            kwargs["token_type_ids"] = None
        kwargs.update(
            {
                "attention_mask": attention_mask,
                "labels": labels,
                "output_attentions": output_attentions,
                "output_hidden_states": output_hidden_states,
                "return_dict": return_dict,
            }
        )

        if peft_config.peft_type == PeftType.PREFIX_TUNING:
            past_key_values = self.get_prompt(batch_size)
            return self.base_model(
                input_ids=input_ids, inputs_embeds=inputs_embeds, past_key_values=past_key_values, **kwargs
            )
        else:
            if inputs_embeds is None:
                inputs_embeds = self.word_embeddings(input_ids)
            # concat prompt labels
            if labels is not None:
                prefix_labels = torch.full((batch_size, peft_config.num_virtual_tokens), -100).to(labels.device)
                kwargs["labels"] = torch.cat((prefix_labels, labels), dim=1)
            prompts = self.get_prompt(batch_size=batch_size, task_ids=task_ids)
            prompts = prompts.to(inputs_embeds.dtype)
            inputs_embeds = torch.cat((prompts, inputs_embeds), dim=1)
            return self.base_model(inputs_embeds=inputs_embeds, **kwargs)

    def generate(self, *args, **kwargs):
        peft_config = self.active_peft_config
        self.base_model.prepare_inputs_for_generation = self.prepare_inputs_for_generation
        if hasattr(self.base_model, "model"):
            self.base_model.model.generation_config = self.generation_config
        else:
            self.base_model.generation_config = self.generation_config
        try:
            if not peft_config.is_prompt_learning:
                with self._enable_peft_forward_hooks(*args, **kwargs):
                    kwargs = {k: v for k, v in kwargs.items() if k not in self.special_peft_forward_args}
                    outputs = self.base_model.generate(*args, **kwargs)
            else:
                outputs = self.base_model.generate(**kwargs)
        except:
            self.base_model.prepare_inputs_for_generation = self.base_model_prepare_inputs_for_generation
            raise
        else:
            self.base_model.prepare_inputs_for_generation = self.base_model_prepare_inputs_for_generation
            return outputs

    def prepare_inputs_for_generation(self, *args, task_ids: Optional[torch.Tensor] = None, **kwargs):
        peft_config = self.active_peft_config
        model_kwargs = self.base_model_prepare_inputs_for_generation(*args, **kwargs)

        # https://github.com/huggingface/transformers/pull/26681/ introduced new cache format
        # for some architectures which requires a special fix for prompt tuning etc.
        # TODO: starting with transformers 4.38, all architectures should support caching.
        uses_transformers_4_38 = packaging.version.parse(transformers.__version__) >= packaging.version.parse("4.38.0")
        uses_transformers_4_36 = packaging.version.parse(transformers.__version__) >= packaging.version.parse("4.36.0")
        transformers_new_cache_archs = ["llama", "mistral", "persimmon", "phi"]
        uses_cache = uses_transformers_4_38 or (
            uses_transformers_4_36 and self.base_model.config.model_type in transformers_new_cache_archs
        )

        if peft_config.peft_type == PeftType.POLY:
            model_kwargs["task_ids"] = task_ids
        if peft_config.is_prompt_learning:
            if uses_cache and (model_kwargs["past_key_values"] is not None):
                # change in the logic of `prepare_inputs_for_generation` makes the below code necessary
                # In prompt learning methods, past key values are longer when compared to the `input_ids`.
                # As such only consider the last input ids in the autogressive generation phase.
                if model_kwargs["past_key_values"][0][0].shape[-2] >= model_kwargs["input_ids"].shape[1]:
                    model_kwargs["input_ids"] = model_kwargs["input_ids"][:, -1:]

            if model_kwargs.get("attention_mask", None) is not None:
                size = model_kwargs["input_ids"].shape[0], peft_config.num_virtual_tokens
                prefix_attention_mask = torch.ones(size).to(model_kwargs["input_ids"].device)
                model_kwargs["attention_mask"] = torch.cat(
                    (prefix_attention_mask, model_kwargs["attention_mask"]), dim=1
                )

            if model_kwargs.get("position_ids", None) is not None:
                warnings.warn("Position ids are not supported for parameter efficient tuning. Ignoring position ids.")
                model_kwargs["position_ids"] = None

            if kwargs.get("token_type_ids", None) is not None:
                warnings.warn(
                    "Token type ids are not supported for parameter efficient tuning. Ignoring token type ids"
                )
                kwargs["token_type_ids"] = None

            if model_kwargs["past_key_values"] is None and peft_config.peft_type == PeftType.PREFIX_TUNING:
                past_key_values = self.get_prompt(batch_size=model_kwargs["input_ids"].shape[0])
                model_kwargs["past_key_values"] = past_key_values
            else:
                if model_kwargs["past_key_values"] is None:
                    inputs_embeds = self.word_embeddings(model_kwargs["input_ids"])
                    prompts = self.get_prompt(batch_size=model_kwargs["input_ids"].shape[0], task_ids=task_ids)
                    prompts = prompts.to(inputs_embeds.dtype)
                    model_kwargs["inputs_embeds"] = torch.cat((prompts, inputs_embeds), dim=1)
                    model_kwargs["input_ids"] = None

        # For transformers>=4.38.0 - for some architectures such as Llama, `cache_position` is
        # passed in the forward pass to keep track of the position ids of the cache. We have to
        # pop that from `model_kwargs` as `cache_position` is properly created by the model, using the passed
        # `inputs_embeds`: https://github.com/huggingface/transformers/blob/593230f0a1150ea9c0477b9d859f25daf73c8c33/src/transformers/models/llama/modeling_llama.py#L956
        _ = model_kwargs.pop("cache_position", None)

        return model_kwargs


class PeftModelForSeq2SeqLM(PeftModel):
    """
    Peft model for sequence-to-sequence language modeling.

    Args:
        model ([`~transformers.PreTrainedModel`]): Base transformer model.
        peft_config ([`PeftConfig`]): Peft config.


    Example:

        ```py
        >>> from transformers import AutoModelForSeq2SeqLM
        >>> from peft import PeftModelForSeq2SeqLM, get_peft_config

        >>> config = {
        ...     "peft_type": "LORA",
        ...     "task_type": "SEQ_2_SEQ_LM",
        ...     "inference_mode": False,
        ...     "r": 8,
        ...     "target_modules": ["q", "v"],
        ...     "lora_alpha": 32,
        ...     "lora_dropout": 0.1,
        ...     "fan_in_fan_out": False,
        ...     "enable_lora": None,
        ...     "bias": "none",
        ... }

        >>> peft_config = get_peft_config(config)
        >>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
        >>> peft_model = PeftModelForSeq2SeqLM(model, peft_config)
        >>> peft_model.print_trainable_parameters()
        trainable params: 884736 || all params: 223843584 || trainable%: 0.3952474242013566
        ```
    """

    def __init__(self, model: torch.nn.Module, peft_config: PeftConfig, adapter_name: str = "default") -> None:
        super().__init__(model, peft_config, adapter_name)
        self.base_model_prepare_inputs_for_generation = self.base_model.prepare_inputs_for_generation
        self.base_model_prepare_encoder_decoder_kwargs_for_generation = (
            self.base_model._prepare_encoder_decoder_kwargs_for_generation
        )

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        inputs_embeds=None,
        decoder_input_ids=None,
        decoder_attention_mask=None,
        decoder_inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        task_ids=None,
        **kwargs,
    ):
        peft_config = self.active_peft_config
        if not peft_config.is_prompt_learning:
            if peft_config.peft_type == PeftType.POLY:
                kwargs["task_ids"] = task_ids

            with self._enable_peft_forward_hooks(**kwargs):
                kwargs = {k: v for k, v in kwargs.items() if k not in self.special_peft_forward_args}
                return self.base_model(
                    input_ids=input_ids,
                    attention_mask=attention_mask,
                    inputs_embeds=inputs_embeds,
                    decoder_input_ids=decoder_input_ids,
                    decoder_attention_mask=decoder_attention_mask,
                    decoder_inputs_embeds=decoder_inputs_embeds,
                    labels=labels,
                    output_attentions=output_attentions,
                    output_hidden_states=output_hidden_states,
                    return_dict=return_dict,
                    **kwargs,
                )

        batch_size = _get_batch_size(input_ids, inputs_embeds)
        if decoder_attention_mask is not None:
            # concat prompt attention mask
            prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(
                decoder_attention_mask.device
            )
            if peft_config.peft_type not in [PeftType.PROMPT_TUNING, PeftType.P_TUNING]:
                decoder_attention_mask = torch.cat((prefix_attention_mask, decoder_attention_mask), dim=1)

        if kwargs.get("position_ids", None) is not None:
            warnings.warn("Position ids are not supported for parameter efficient tuning. Ignoring position ids.")
            kwargs["position_ids"] = None
        if kwargs.get("token_type_ids", None) is not None:
            warnings.warn("Token type ids are not supported for parameter efficient tuning. Ignoring token type ids")
            kwargs["token_type_ids"] = None
        kwargs.update(
            {
                "attention_mask": attention_mask,
                "decoder_attention_mask": decoder_attention_mask,
                "labels": labels,
                "output_attentions": output_attentions,
                "output_hidden_states": output_hidden_states,
                "return_dict": return_dict,
            }
        )

        if peft_config.peft_type == PeftType.PREFIX_TUNING:
            past_key_values = self.get_prompt(batch_size)
            return self.base_model(
                input_ids=input_ids,
                decoder_input_ids=decoder_input_ids,
                decoder_inputs_embeds=decoder_inputs_embeds,
                past_key_values=past_key_values,
                **kwargs,
            )
        elif peft_config.peft_type in [PeftType.PROMPT_TUNING, PeftType.P_TUNING]:
            if inputs_embeds is None:
                inputs_embeds = self.word_embeddings(input_ids)

            if attention_mask is not None:
                # concat prompt attention mask
                prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(
                    attention_mask.device
                )
                kwargs["attention_mask"] = torch.cat((prefix_attention_mask, attention_mask), dim=1)

            prompts = self.get_prompt(batch_size=batch_size)
            prompts = prompts.to(inputs_embeds.dtype)
            inputs_embeds = torch.cat((prompts[:, : peft_config.num_virtual_tokens], inputs_embeds), dim=1)

            return self.base_model(
                inputs_embeds=inputs_embeds,
                decoder_input_ids=decoder_input_ids,
                decoder_inputs_embeds=decoder_inputs_embeds,
                **kwargs,
            )
        else:
            if inputs_embeds is None:
                inputs_embeds = self.word_embeddings(input_ids)
            if decoder_inputs_embeds is None and decoder_input_ids is None:
                decoder_input_ids = shift_tokens_right(
                    labels, self.config.pad_token_id, self.config.decoder_start_token_id
                )
                decoder_inputs_embeds = self.word_embeddings(decoder_input_ids)

            if attention_mask is not None:
                # concat prompt attention mask
                prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(
                    attention_mask.device
                )
                kwargs["attention_mask"] = torch.cat((prefix_attention_mask, attention_mask), dim=1)
            # concat prompt labels
            if labels is not None:
                if peft_config.num_transformer_submodules == 1:
                    kwargs["labels"] = labels
                elif peft_config.num_transformer_submodules == 2:
                    prefix_labels = torch.full((batch_size, peft_config.num_virtual_tokens), -100).to(labels.device)
                    kwargs["labels"] = torch.cat((prefix_labels, labels), dim=1)
            prompts = self.get_prompt(batch_size=batch_size, task_ids=task_ids)
            prompts = prompts.to(inputs_embeds.dtype)
            inputs_embeds = torch.cat((prompts[:, : peft_config.num_virtual_tokens], inputs_embeds), dim=1)
            if peft_config.num_transformer_submodules == 1:
                return self.base_model(inputs_embeds=inputs_embeds, **kwargs)
            elif peft_config.num_transformer_submodules == 2:
                decoder_inputs_embeds = torch.cat(
                    (prompts[:, peft_config.num_virtual_tokens :], decoder_inputs_embeds), dim=1
                )
                return self.base_model(
                    inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, **kwargs
                )

    def generate(self, **kwargs):
        peft_config = self.active_peft_config
        self.base_model.prepare_inputs_for_generation = self.prepare_inputs_for_generation
        self.base_model._prepare_encoder_decoder_kwargs_for_generation = (
            self._prepare_encoder_decoder_kwargs_for_generation
        )
        try:
            if not peft_config.is_prompt_learning:
                with self._enable_peft_forward_hooks(**kwargs):
                    kwargs = {k: v for k, v in kwargs.items() if k not in self.special_peft_forward_args}
                    outputs = self.base_model.generate(**kwargs)
            else:
                if "input_ids" not in kwargs:
                    raise ValueError("input_ids must be provided for Peft model generation")
                if kwargs.get("position_ids", None) is not None:
                    warnings.warn(
                        "Position ids are not supported for parameter efficient tuning. Ignoring position ids."
                    )
                    kwargs["position_ids"] = None
                if kwargs.get("token_type_ids", None) is not None:
                    warnings.warn(
                        "Token type ids are not supported for parameter efficient tuning. Ignoring token type ids"
                    )
                    kwargs["token_type_ids"] = None

                if peft_config.peft_type == PeftType.PREFIX_TUNING:
                    outputs = self.base_model.generate(**kwargs)
                elif peft_config.peft_type in [
                    PeftType.PROMPT_TUNING,
                    PeftType.P_TUNING,
                    PeftType.MULTITASK_PROMPT_TUNING,
                ]:
                    kwargs = deepcopy(kwargs)

                    if "encoder_outputs" in kwargs:
                        del kwargs["encoder_outputs"]
                        warnings.warn(
                            "`encoder_outputs` should not be passed to `generate` when using prompt tuning. Ignoring it."
                        )

                    input_ids = kwargs.pop("input_ids")
                    inputs_embeds = self.word_embeddings(input_ids)
                    batch_size = inputs_embeds.shape[0]
                    prompts = self.get_prompt(batch_size=batch_size, task_ids=kwargs.pop("task_ids", None))
                    prompts = prompts.to(inputs_embeds.dtype)

                    inputs_embeds = torch.cat((prompts[:, : peft_config.num_virtual_tokens], inputs_embeds), dim=1)
                    kwargs["inputs_embeds"] = inputs_embeds

                    if "attention_mask" in kwargs:
                        prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(
                            kwargs["attention_mask"].device
                        )
                        kwargs["attention_mask"] = torch.cat((prefix_attention_mask, kwargs["attention_mask"]), dim=1)

                    return self.base_model.generate(**kwargs)
                else:
                    raise NotImplementedError
        except:
            self.base_model.prepare_inputs_for_generation = self.base_model_prepare_inputs_for_generation
            self.base_model._prepare_encoder_decoder_kwargs_for_generation = (
                self.base_model_prepare_encoder_decoder_kwargs_for_generation
            )
            raise
        else:
            self.base_model.prepare_inputs_for_generation = self.base_model_prepare_inputs_for_generation
            self.base_model._prepare_encoder_decoder_kwargs_for_generation = (
                self.base_model_prepare_encoder_decoder_kwargs_for_generation
            )
            return outputs

    def prepare_inputs_for_generation(self, *args, task_ids: torch.Tensor = None, **kwargs):
        peft_config = self.active_peft_config
        model_kwargs = self.base_model_prepare_inputs_for_generation(*args, **kwargs)
        if peft_config.peft_type == PeftType.POLY:
            model_kwargs["task_ids"] = task_ids
        if model_kwargs["past_key_values"] is None and peft_config.peft_type == PeftType.PREFIX_TUNING:
            batch_size = model_kwargs["decoder_input_ids"].shape[0]
            past_key_values = self.get_prompt(batch_size)
            model_kwargs["past_key_values"] = past_key_values

        return model_kwargs


class PeftModelForTokenClassification(PeftModel):
    """
    Peft model for token classification tasks.

    Args:
        model ([`~transformers.PreTrainedModel`]): Base transformer model.
        peft_config ([`PeftConfig`]): Peft config.

    **Attributes**:
        - **config** ([`~transformers.PretrainedConfig`]) -- The configuration object of the base model.
        - **cls_layer_name** (`str`) -- The name of the classification layer.

    Example:

        ```py
        >>> from transformers import AutoModelForSequenceClassification
        >>> from peft import PeftModelForTokenClassification, get_peft_config

        >>> config = {
        ...     "peft_type": "PREFIX_TUNING",
        ...     "task_type": "TOKEN_CLS",
        ...     "inference_mode": False,
        ...     "num_virtual_tokens": 20,
        ...     "token_dim": 768,
        ...     "num_transformer_submodules": 1,
        ...     "num_attention_heads": 12,
        ...     "num_layers": 12,
        ...     "encoder_hidden_size": 768,
        ...     "prefix_projection": False,
        ...     "postprocess_past_key_value_function": None,
        ... }

        >>> peft_config = get_peft_config(config)
        >>> model = AutoModelForTokenClassification.from_pretrained("bert-base-cased")
        >>> peft_model = PeftModelForTokenClassification(model, peft_config)
        >>> peft_model.print_trainable_parameters()
        trainable params: 370178 || all params: 108680450 || trainable%: 0.3406113979101117
        ```
    """

    def __init__(self, model: torch.nn.Module, peft_config: PeftConfig = None, adapter_name: str = "default") -> None:
        super().__init__(model, peft_config, adapter_name)

        classifier_module_names = ["classifier", "score"]
        if self.modules_to_save is None:
            self.modules_to_save = set(classifier_module_names)
        else:
            self.modules_to_save.update(classifier_module_names)

        if hasattr(peft_config, "modules_to_save"):
            if peft_config.modules_to_save is None:
                peft_config.modules_to_save = classifier_module_names[:]
            else:
                peft_config.modules_to_save.extend(classifier_module_names)

        for name, _ in self.base_model.named_children():
            if any(module_name in name for module_name in self.modules_to_save):
                self.cls_layer_name = name
                break

        # to make sure classifier layer is trainable; this may add a new ModulesToSaveWrapper
        _set_trainable(self, adapter_name)

    def add_adapter(self, adapter_name: str, peft_config: PeftConfig) -> None:
        """
        Add an adapter to the model based on the passed configuration.

        This adapter is not trained. To load a trained adapter, check out [`PeftModel.load_adapter`].

        The name for the new adapter should be unique.

        The new adapter is not automatically set as the active adapter. Use [`PeftModel.set_adapter`] to set the active
        adapter.

        Args:
            adapter_name (`str`):
                The name of the adapter to be added.
            peft_config ([`PeftConfig`]):
                The configuration of the adapter to be added.
        """
        # ensure that additional adapters also add the classifier layer to modules_to_save
        if hasattr(peft_config, "modules_to_save"):
            classifier_module_names = ["classifier", "score"]
            if peft_config.modules_to_save is None:
                peft_config.modules_to_save = classifier_module_names[:]
            else:
                peft_config.modules_to_save.extend(classifier_module_names)

        return super().add_adapter(adapter_name, peft_config)

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        task_ids=None,
        **kwargs,
    ):
        peft_config = self.active_peft_config
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if not peft_config.is_prompt_learning:
            with self._enable_peft_forward_hooks(**kwargs):
                kwargs = {k: v for k, v in kwargs.items() if k not in self.special_peft_forward_args}
                if peft_config.peft_type == PeftType.POLY:
                    kwargs["task_ids"] = task_ids
                return self.base_model(
                    input_ids=input_ids,
                    attention_mask=attention_mask,
                    inputs_embeds=inputs_embeds,
                    labels=labels,
                    output_attentions=output_attentions,
                    output_hidden_states=output_hidden_states,
                    return_dict=return_dict,
                    **kwargs,
                )

        batch_size = _get_batch_size(input_ids, inputs_embeds)
        if attention_mask is not None:
            # concat prompt attention mask
            prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(attention_mask.device)
            attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
        if kwargs.get("position_ids", None) is not None:
            warnings.warn("Position ids are not supported for parameter efficient tuning. Ignoring position ids.")
            kwargs["position_ids"] = None
        kwargs.update(
            {
                "attention_mask": attention_mask,
                "labels": labels,
                "output_attentions": output_attentions,
                "output_hidden_states": output_hidden_states,
                "return_dict": return_dict,
            }
        )

        if peft_config.peft_type == PeftType.PREFIX_TUNING:
            return self._prefix_tuning_forward(input_ids=input_ids, **kwargs)
        else:
            if kwargs.get("token_type_ids", None) is not None:
                kwargs["token_type_ids"] = torch.cat(
                    (
                        torch.zeros(batch_size, peft_config.num_virtual_tokens).to(self.word_embeddings.weight.device),
                        kwargs["token_type_ids"],
                    ),
                    dim=1,
                ).long()
            if inputs_embeds is None:
                inputs_embeds = self.word_embeddings(input_ids)
            prompts = self.get_prompt(batch_size=batch_size, task_ids=task_ids)
            prompts = prompts.to(inputs_embeds.dtype)
            inputs_embeds = torch.cat((prompts, inputs_embeds), dim=1)
            return self.base_model(inputs_embeds=inputs_embeds, **kwargs)

    def _prefix_tuning_forward(
        self,
        input_ids=None,
        attention_mask=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        **kwargs,
    ):
        batch_size = _get_batch_size(input_ids, inputs_embeds)
        past_key_values = self.get_prompt(batch_size)
        fwd_params = list(inspect.signature(self.base_model.forward).parameters.keys())
        kwargs.update(
            {
                "input_ids": input_ids,
                "attention_mask": attention_mask,
                "inputs_embeds": inputs_embeds,
                "output_attentions": output_attentions,
                "output_hidden_states": output_hidden_states,
                "return_dict": return_dict,
                "past_key_values": past_key_values,
            }
        )
        if "past_key_values" in fwd_params:
            return self.base_model(labels=labels, **kwargs)
        else:
            transformer_backbone_name = self.base_model.get_submodule(self.transformer_backbone_name)
            fwd_params = list(inspect.signature(transformer_backbone_name.forward).parameters.keys())
            if "past_key_values" not in fwd_params:
                raise ValueError("Model does not support past key values which are required for prefix tuning.")
            outputs = transformer_backbone_name(**kwargs)
            sequence_output = outputs[0]
            if "dropout" in [name for name, _ in list(self.base_model.named_children())]:
                sequence_output = self.base_model.dropout(sequence_output)
            logits = self.base_model.get_submodule(self.cls_layer_name)(sequence_output)

            loss = None
            if labels is not None:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

            if not return_dict:
                output = (logits,) + outputs[2:]
                return ((loss,) + output) if loss is not None else output

            return TokenClassifierOutput(
                loss=loss,
                logits=logits,
                hidden_states=outputs.hidden_states,
                attentions=outputs.attentions,
            )


class PeftModelForQuestionAnswering(PeftModel):
    """
    Peft model for extractive question answering.

    Args:
        model ([`~transformers.PreTrainedModel`]): Base transformer model.
        peft_config ([`PeftConfig`]): Peft config.

    **Attributes**:
        - **config** ([`~transformers.PretrainedConfig`]) -- The configuration object of the base model.
        - **cls_layer_name** (`str`) -- The name of the classification layer.

    Example:

        ```py
        >>> from transformers import AutoModelForQuestionAnswering
        >>> from peft import PeftModelForQuestionAnswering, get_peft_config

        >>> config = {
        ...     "peft_type": "LORA",
        ...     "task_type": "QUESTION_ANS",
        ...     "inference_mode": False,
        ...     "r": 16,
        ...     "target_modules": ["query", "value"],
        ...     "lora_alpha": 32,
        ...     "lora_dropout": 0.05,
        ...     "fan_in_fan_out": False,
        ...     "bias": "none",
        ... }

        >>> peft_config = get_peft_config(config)
        >>> model = AutoModelForQuestionAnswering.from_pretrained("bert-base-cased")
        >>> peft_model = PeftModelForQuestionAnswering(model, peft_config)
        >>> peft_model.print_trainable_parameters()
        trainable params: 592900 || all params: 108312580 || trainable%: 0.5473971721475013
        ```
    """

    def __init__(self, model: torch.nn.Module, peft_config: PeftConfig, adapter_name: str = "default") -> None:
        super().__init__(model, peft_config, adapter_name)

        qa_module_names = ["qa_outputs"]
        if self.modules_to_save is None:
            self.modules_to_save = set(qa_module_names)
        else:
            self.modules_to_save.update(qa_module_names)

        if hasattr(peft_config, "modules_to_save"):
            if peft_config.modules_to_save is None:
                peft_config.modules_to_save = qa_module_names[:]
            else:
                peft_config.modules_to_save.extend(qa_module_names)

        for name, _ in self.base_model.named_children():
            if any(module_name in name for module_name in self.modules_to_save):
                self.cls_layer_name = name
                break

        # to make sure classifier layer is trainable; this may add a new ModulesToSaveWrapper
        _set_trainable(self, adapter_name)

    def add_adapter(self, adapter_name: str, peft_config: PeftConfig) -> None:
        """
        Add an adapter to the model based on the passed configuration.

        This adapter is not trained. To load a trained adapter, check out [`PeftModel.load_adapter`].

        The name for the new adapter should be unique.

        The new adapter is not automatically set as the active adapter. Use [`PeftModel.set_adapter`] to set the active
        adapter.

        Args:
            adapter_name (`str`):
                The name of the adapter to be added.
            peft_config ([`PeftConfig`]):
                The configuration of the adapter to be added.
        """
        # ensure that additional adapters also add the classifier layer to modules_to_save
        if hasattr(peft_config, "modules_to_save"):
            qa_module_names = ["qa_outputs"]
            if peft_config.modules_to_save is None:
                peft_config.modules_to_save = qa_module_names[:]
            else:
                peft_config.modules_to_save.extend(qa_module_names)

        return super().add_adapter(adapter_name, peft_config)

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        inputs_embeds=None,
        start_positions=None,
        end_positions=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        task_ids=None,
        **kwargs,
    ):
        peft_config = self.active_peft_config
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if not peft_config.is_prompt_learning:
            if peft_config.peft_type == PeftType.POLY:
                kwargs["task_ids"] = task_ids

            with self._enable_peft_forward_hooks(**kwargs):
                kwargs = {k: v for k, v in kwargs.items() if k not in self.special_peft_forward_args}
                return self.base_model(
                    input_ids=input_ids,
                    attention_mask=attention_mask,
                    inputs_embeds=inputs_embeds,
                    start_positions=start_positions,
                    end_positions=end_positions,
                    output_attentions=output_attentions,
                    output_hidden_states=output_hidden_states,
                    return_dict=return_dict,
                    **kwargs,
                )

        batch_size = _get_batch_size(input_ids, inputs_embeds)
        if attention_mask is not None:
            # concat prompt attention mask
            prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(attention_mask.device)
            attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
        if kwargs.get("position_ids", None) is not None:
            warnings.warn("Position ids are not supported for parameter efficient tuning. Ignoring position ids.")
            kwargs["position_ids"] = None
        kwargs.update(
            {
                "attention_mask": attention_mask,
                "start_positions": start_positions,
                "end_positions": end_positions,
                "output_attentions": output_attentions,
                "output_hidden_states": output_hidden_states,
                "return_dict": return_dict,
            }
        )

        if peft_config.peft_type == PeftType.PREFIX_TUNING:
            return self._prefix_tuning_forward(input_ids=input_ids, **kwargs)
        else:
            if kwargs.get("token_type_ids", None) is not None:
                kwargs["token_type_ids"] = torch.cat(
                    (
                        torch.zeros(batch_size, peft_config.num_virtual_tokens).to(self.word_embeddings.weight.device),
                        kwargs["token_type_ids"],
                    ),
                    dim=1,
                ).long()
            if inputs_embeds is None:
                inputs_embeds = self.word_embeddings(input_ids)
            prompts = self.get_prompt(batch_size=batch_size)
            prompts = prompts.to(inputs_embeds.dtype)
            inputs_embeds = torch.cat((prompts, inputs_embeds), dim=1)
            return self.base_model(inputs_embeds=inputs_embeds, **kwargs)

    def _prefix_tuning_forward(
        self,
        input_ids=None,
        attention_mask=None,
        inputs_embeds=None,
        start_positions=None,
        end_positions=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        **kwargs,
    ):
        batch_size = _get_batch_size(input_ids, inputs_embeds)
        past_key_values = self.get_prompt(batch_size)
        fwd_params = list(inspect.signature(self.base_model.forward).parameters.keys())
        kwargs.update(
            {
                "input_ids": input_ids,
                "attention_mask": attention_mask,
                "inputs_embeds": inputs_embeds,
                "output_attentions": output_attentions,
                "output_hidden_states": output_hidden_states,
                "return_dict": return_dict,
                "past_key_values": past_key_values,
            }
        )
        if "past_key_values" in fwd_params:
            return self.base_model(start_positions=start_positions, end_positions=end_positions, **kwargs)
        else:
            transformer_backbone_name = self.base_model.get_submodule(self.transformer_backbone_name)
            fwd_params = list(inspect.signature(transformer_backbone_name.forward).parameters.keys())
            if "past_key_values" not in fwd_params:
                raise ValueError("Model does not support past key values which are required for prefix tuning.")
            outputs = transformer_backbone_name(**kwargs)
            sequence_output = outputs[0]
            if "dropout" in [name for name, _ in list(self.base_model.named_children())]:
                sequence_output = self.base_model.dropout(sequence_output)
            logits = self.base_model.get_submodule(self.cls_layer_name)(sequence_output)
            start_logits, end_logits = logits.split(1, dim=-1)
            start_logits = start_logits.squeeze(-1).contiguous()
            end_logits = end_logits.squeeze(-1).contiguous()

            total_loss = None
            if start_positions is not None and end_positions is not None:
                # If we are on multi-GPU, split add a dimension
                if len(start_positions.size()) > 1:
                    start_positions = start_positions.squeeze(-1)
                if len(end_positions.size()) > 1:
                    end_positions = end_positions.squeeze(-1)
                # sometimes the start/end positions are outside our model inputs, we ignore these terms
                ignored_index = start_logits.size(1)
                start_positions = start_positions.clamp(0, ignored_index)
                end_positions = end_positions.clamp(0, ignored_index)

                loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
                start_loss = loss_fct(start_logits, start_positions)
                end_loss = loss_fct(end_logits, end_positions)
                total_loss = (start_loss + end_loss) / 2

            if not return_dict:
                output = (start_logits, end_logits) + outputs[2:]
                return ((total_loss,) + output) if total_loss is not None else output

            return QuestionAnsweringModelOutput(
                loss=total_loss,
                start_logits=start_logits,
                end_logits=end_logits,
                hidden_states=outputs.hidden_states,
                attentions=outputs.attentions,
            )


class PeftModelForFeatureExtraction(PeftModel):
    """
    Peft model for extracting features/embeddings from transformer models

    Args:
        model ([`~transformers.PreTrainedModel`]): Base transformer model.
        peft_config ([`PeftConfig`]): Peft config.

    **Attributes**:
        - **config** ([`~transformers.PretrainedConfig`]) -- The configuration object of the base model.

    Example:

        ```py
        >>> from transformers import AutoModel
        >>> from peft import PeftModelForFeatureExtraction, get_peft_config

        >>> config = {
        ...     "peft_type": "LORA",
        ...     "task_type": "FEATURE_EXTRACTION",
        ...     "inference_mode": False,
        ...     "r": 16,
        ...     "target_modules": ["query", "value"],
        ...     "lora_alpha": 32,
        ...     "lora_dropout": 0.05,
        ...     "fan_in_fan_out": False,
        ...     "bias": "none",
        ... }
        >>> peft_config = get_peft_config(config)
        >>> model = AutoModel.from_pretrained("bert-base-cased")
        >>> peft_model = PeftModelForFeatureExtraction(model, peft_config)
        >>> peft_model.print_trainable_parameters()
        ```
    """

    def __init__(self, model: torch.nn.Module, peft_config: PeftConfig, adapter_name: str = "default"):
        super().__init__(model, peft_config, adapter_name)

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        inputs_embeds=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        task_ids=None,
        **kwargs,
    ):
        peft_config = self.active_peft_config
        if not peft_config.is_prompt_learning:
            if peft_config.peft_type == PeftType.POLY:
                kwargs["task_ids"] = task_ids

            with self._enable_peft_forward_hooks(**kwargs):
                kwargs = {k: v for k, v in kwargs.items() if k not in self.special_peft_forward_args}
                return self.base_model(
                    input_ids=input_ids,
                    attention_mask=attention_mask,
                    inputs_embeds=inputs_embeds,
                    output_attentions=output_attentions,
                    output_hidden_states=output_hidden_states,
                    return_dict=return_dict,
                    **kwargs,
                )

        batch_size = _get_batch_size(input_ids, inputs_embeds)
        if attention_mask is not None:
            # concat prompt attention mask
            prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(attention_mask.device)
            attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)

        if kwargs.get("position_ids", None) is not None:
            warnings.warn("Position ids are not supported for parameter efficient tuning. Ignoring position ids.")
            kwargs["position_ids"] = None
        if kwargs.get("token_type_ids", None) is not None:
            warnings.warn("Token type ids are not supported for parameter efficient tuning. Ignoring token type ids")
            kwargs["token_type_ids"] = None
        kwargs.update(
            {
                "attention_mask": attention_mask,
                "output_attentions": output_attentions,
                "output_hidden_states": output_hidden_states,
                "return_dict": return_dict,
            }
        )

        if peft_config.peft_type == PeftType.PREFIX_TUNING:
            past_key_values = self.get_prompt(batch_size)
            return self.base_model(input_ids=input_ids, past_key_values=past_key_values, **kwargs)
        else:
            if inputs_embeds is None:
                inputs_embeds = self.word_embeddings(input_ids)
            prompts = self.get_prompt(batch_size=batch_size)
            prompts = prompts.to(inputs_embeds.dtype)
            inputs_embeds = torch.cat((prompts, inputs_embeds), dim=1)
            return self.base_model(inputs_embeds=inputs_embeds, **kwargs)


@dataclass
class TunerLayerStatus:
    name: str
    module_type: str
    enabled: bool
    active_adapters: list[str]
    merged_adapters: list[str]
    requires_grad: dict[str, bool | Literal["irregular"]]
    available_adapters: list[str]


def get_layer_status(model: torch.nn.Module) -> list[TunerLayerStatus]:
    """Get the status of each adapter layer in the model.

    This function returns a list of `TunerLayerStatus` dataclass instances, each of which contains the following
    attributes:

    - `name` (`str`):
       The name of the adapter layer, e.g. `model.encoder.block.0.layer.0.SelfAttention.q`.
    - `module_type` (`str`):
       The type of the adapter layer, e.g. `lora.Linear`.
    - `enabled` (`bool`):
       Whether the adapter layer is enabled.
    - `active_adapters` (`list[str]`):
       The names of the active adapters, if any, e.g. `["default"]`.
    - `merged_adapters` (`list[str]`):
       The names of the merged adapters, if any, e.g. `["default"]`.
    - requires_grad : dict[str, bool | Literal["irregular"]]
       The requires_grad status of the parameters for each adapter module. Ideally, it should be either `True` or
       `False`. If the requires_grad status is not consistent across all parameters, the value will be set to
       `"irregular"`.
    - `available_adapters` (`list[str]`):
       The names of the available adapters, e.g. `["default"]`.

    Args:
        model ([Union[`~PeftModel`, `~transformers.PreTrainedModel`, `nn.Module`]]):
            The model to get the adapter layer status from.

    Returns:
        list[`peft.peft_model.TunerLayerStatus`]:
            A list of dataclasses, each containing the status of the corresponding adapter layer.

    """
    if isinstance(model, PeftModel):
        base_model = model.base_model
        if not isinstance(base_model, BaseTuner):
            raise TypeError(
                "get_layer_status() got an invalid PeftModel instance; prefix tuning and adaption prompt are not "
                "supported."
            )
    else:
        base_model = model

    layer_status: list[TunerLayerStatus] = []
    for name, module in base_model.named_modules():
        if not isinstance(module, BaseTunerLayer):
            continue

        # determine if all submodules/parameters if this module require grad or not
        mapping_requires_grad_list: dict[str, list[bool]] = collections.defaultdict(list)
        for adapter_module_name in module.adapter_layer_names:
            adapter_module = getattr(module, adapter_module_name)
            if isinstance(adapter_module, torch.nn.ModuleDict):
                for key, submodule in adapter_module.items():
                    for param in submodule.parameters():
                        mapping_requires_grad_list[key].append(param.requires_grad)
            elif isinstance(adapter_module, torch.nn.ParameterDict):
                for key, param in adapter_module.items():
                    mapping_requires_grad_list[key].append(param.requires_grad)
            else:
                # strange, we don't know how to handle this, ignore for now
                pass

        def check_irrgular(vals: list[bool]) -> bool | Literal["irregular"]:
            if all(vals):
                return True
            if not any(vals):
                return False
            return "irregular"

        requires_grad = {key: check_irrgular(vals) for key, vals in mapping_requires_grad_list.items()}

        status = TunerLayerStatus(
            name=name,
            module_type=repr(module).partition("(")[0],
            enabled=not module.disable_adapters,
            active_adapters=module.active_adapters,
            merged_adapters=module.merged_adapters,
            requires_grad=requires_grad,
            available_adapters=sorted(module._get_available_adapters()),
        )
        layer_status.append(status)

    if not layer_status:
        raise ValueError(
            "No adapter layers found in the model, please ensure that it's a PEFT model or that you have PEFT adapters "
            "injected in the model."
        )

    return layer_status


@dataclass
class TunerModelStatus:
    base_model_type: str
    adapter_model_type: str
    peft_types: dict[str, str]
    trainable_params: int
    total_params: int
    num_adapter_layers: int
    enabled: bool | Literal["irregular"]
    active_adapters: list[str] | Literal["irregular"]
    merged_adapters: list[str] | Literal["irregular"]
    requires_grad: dict[str, bool | Literal["irregular"]]
    available_adapters: list[str]


def get_model_status(model: torch.nn.Module) -> TunerModelStatus:
    """Get the status of tuners of the model.

    This function returns a `TunerModelStatus` dataclass instance, which contains the following attributes:

    - `base_model_type` (`str`):
       The type of the base model, e.g. `T5Model`.
    - `adapter_model_type` (`str`):
       The type of the adapter model, e.g. `LoraModel`.
    - `peft_types` (`dict[str, str]`):
       The mapping of adapter name to adapter type, e.g. `{"default": "LORA"}`.
    - `trainable_params` (`int`):
       The number of trainable parameters in the model.
    - `total_params` (`int`):
       The total number of parameters in the model.
    - `num_adapter_layers` (`int`):
       The number of adapter layers in the model.
    - `enabled` (`bool`, `Literal["irregular"]`):
       Whether all adapter layers are enabled. If some are enabled and some are not, this will be `"irregular"`. This
       means that your model is in an inconsistent state and might not work as expected.
    - `active_adapters` (`list[str]`, `Literal["irregular"]`):
       The names of the active adapters. If the active adapters are not consistent across all layers, this will be
       `"irregular"`, which means that your model is in an inconsistent state and might not work as expected.
    - `merged_adapters` (`list[str]`, `Literal["irregular"]`):
       The names of the merged adapters. If the merged adapters are not consistent across all layers, this will be
       `"irregular"`, which means that your model is in an inconsistent state and might not work as expected.
    - `requires_grad` (`dict[str, bool | Literal["irregular"]]`):
       Whether for the given adapter, all adapter layers have `requires_grad` set to `True` or `False`. If there is a
       mix, this will be set to `"irregular"`, which means that your model is in an inconsistent state and might not
       work as expected.
    - `available_adapters` (`list[str]`):
       The names of the available adapters, e.g. `["default"]`.

    Args:
        model ([Union[`~PeftModel`, `~transformers.PreTrainedModel`, `nn.Module`]]):
            The model to get the adapter layer status from.

    Returns:
        `peft.peft_model.TunerModelStatus`:
            A dataclass containing the status of the model.

    """
    if isinstance(model, PeftModel):
        if not isinstance(model.base_model, BaseTuner):
            raise TypeError(
                "get_model_status() got an invalid PeftModel instance; prefix tuning and adaption prompt are not "
                "supported."
            )
        base_model_type = model.get_base_model().__class__.__name__
        trainable_params, total_params = model.get_nb_trainable_parameters()
        base_model = model.base_model
        peft_types = {key: str(config.peft_type).partition(".")[-1] for key, config in base_model.peft_config.items()}
        adapter_model_type = base_model.__class__.__name__
    elif isinstance(model, PreTrainedModel):
        base_model_type = model.__class__.__name__
        trainable_params, total_params = PeftModel.get_nb_trainable_parameters(model)
        base_model = model
        peft_types = {}
        adapter_model_type = "None"
    else:
        base_model_type = "other"
        trainable_params, total_params = PeftModel.get_nb_trainable_parameters(model)
        base_model = model
        peft_types = {}
        adapter_model_type = "None"

    layer_status = get_layer_status(model)
    num_adapter_layers = len(layer_status)

    enabled_set: set[bool] = {status.enabled for status in layer_status}  # must be {True}, {False}, or {True, False}
    enabled: bool | Literal["irregular"]
    if len(enabled_set) == 1:
        enabled = enabled_set.pop()
    else:
        enabled = "irregular"

    available_adapters: list[str] = sorted(set().union(*(status.available_adapters for status in layer_status)))

    # ideally, active adapters should be consistent across all layers of the model, but we cannot guarantee it
    all_active_adapters: set[tuple[str, ...]] = {tuple(status.active_adapters) for status in layer_status}
    active_adapters: list[str] | Literal["irregular"]
    if not all_active_adapters:
        active_adapters = []
    elif len(all_active_adapters) == 1:
        active_adapters = list(all_active_adapters.pop())
    else:
        active_adapters = "irregular"

    # Here we determine what adapters are merged. This is not trivial because multiple adapters can be merged or not at
    # the same time. Some layers may only have adapter A, some only adapter B, so it's not as easy as just checking
    # which adapters are merged on each layer.

    # First, determine all adapters that are merged on at least on module.
    merged_all: set[str] = set()
    for status in layer_status:
        merged_all.update(status.merged_adapters)

    # Next, check if on any layer, on of these adapters is not merged.
    merged_adapters: list[str] | Literal["irregular"] = sorted(merged_all)
    for status in layer_status:
        unmerged = set(status.available_adapters) - set(status.merged_adapters)
        if unmerged & merged_all:
            # there is overlap between unmerged adapters and adapters that should be merged
            merged_adapters = "irregular"
            break

    # check status of requires_grad
    # first, merge the values for all layers
    requires_grad_all: dict[str, list[bool | Literal["irregular"]]] = collections.defaultdict(list)
    for status in layer_status:
        for key, val in status.requires_grad.items():
            requires_grad_all[key].append(val)

    # then, check if the values are consistent
    def check_irrgular(vals: list[bool | Literal["irregular"]]) -> bool | Literal["irregular"]:
        if all(val is True for val in vals):
            return True
        if all(val is False for val in vals):
            return False
        return "irregular"

    requires_grad = {key: check_irrgular(vals) for key, vals in requires_grad_all.items()}

    adapter_model_status = TunerModelStatus(
        base_model_type=base_model_type,
        adapter_model_type=adapter_model_type,
        peft_types=peft_types,
        trainable_params=trainable_params,
        total_params=total_params,
        num_adapter_layers=num_adapter_layers,
        enabled=enabled,
        active_adapters=active_adapters,
        merged_adapters=merged_adapters,
        requires_grad=requires_grad,
        available_adapters=available_adapters,
    )
    return adapter_model_status