File size: 33,984 Bytes
d711508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations

import copy
import logging
import os
import re
import warnings
from abc import ABC, abstractmethod
from contextlib import contextmanager
from typing import Any, Optional, Union

import torch
from accelerate.hooks import AlignDevicesHook
from accelerate.utils import named_module_tensors, offload_state_dict
from torch import nn
from transformers import PreTrainedModel
from transformers.pytorch_utils import Conv1D

from peft.utils import INCLUDE_LINEAR_LAYERS_SHORTHAND

from ..config import PeftConfig
from ..utils import ModulesToSaveWrapper, _get_submodules


logger = logging.getLogger(__name__)


@contextmanager
def onload_layer(layer):
    r"""
    A utility for modifying a module containing one or more tuners and a base layer, any of which are offloaded to the
    CPU or disk. Moves a module's sub-modules to the execution device before some action is performed, after that the
    base layer state dictionary is re-assigned (if that layer was offloaded to the disk) and finally the parameters are
    offloaded.

    If the module has no offloaded sub-modules, this function does nothing.

    Args:
        layer ('torch.nn.Module'):
            layer with tuners to be merged
    """

    offloaded_modules = []
    for name, module in layer.named_modules():
        if name in ["", "base_layer"]:
            continue
        if hasattr(module, "_hf_hook") and isinstance(module._hf_hook, AlignDevicesHook) and module._hf_hook.offload:
            module._hf_hook.pre_forward(module)
            offloaded_modules.append(module)

    base_layer_offload = False
    if hasattr(layer, "base_layer") and (
        hasattr(layer.base_layer, "_hf_hook")
        and isinstance(layer.base_layer._hf_hook, AlignDevicesHook)
        and layer.base_layer._hf_hook.offload
    ):
        # check if the base layer is disk-offloaded (must contain a 'dataset' and an offload index)
        if torch.device("meta") in layer.base_layer._hf_hook.original_devices.values() and hasattr(
            layer.base_layer._hf_hook.weights_map, "dataset"
        ):
            # find the disk-offload index (maps modules to safetensors) from the `dataset` (OffloadedWeightsLoader object)
            index = layer.base_layer._hf_hook.weights_map.dataset.index
            module_name = list(dict(layer.base_layer._hf_hook.weights_map.dataset).keys())[0]  # any module will do
            file_name = index[module_name]["safetensors_file"]
            base_name_arr = []
            # get effective dir name
            for i in os.path.split(file_name):
                if "--" in i:
                    base_name_arr.append(i)
                    break
                base_name_arr.append(i)
            base_name = os.path.join(*base_name_arr)
            safetensors_filename = base_name + "-merged"
        layer.base_layer._hf_hook.pre_forward(layer.base_layer)
        base_layer_offload = True

    yield

    for module in offloaded_modules:
        module._hf_hook.post_forward(module, torch.tensor([]))

    if base_layer_offload:
        # re-make weights map (must be on cpu to send params to the disk via memmap if disk offload)
        layer.base_layer._hf_hook.weights_map = {
            name: param.to("cpu") for name, param in named_module_tensors(layer.base_layer)
        }
        # offload weights map to disk if original device is the disk
        if torch.device("meta") in layer.base_layer._hf_hook.original_devices.values() and hasattr(
            layer.base_layer._hf_hook.weights_map, "dataset"
        ):
            # rewrite directory with merged weights
            offload_state_dict(safetensors_filename, layer.base_layer._hf_hook.weights_map)
        layer.base_layer._hf_hook.post_forward(layer.base_layer, torch.tensor([]))


class BaseTuner(nn.Module, ABC):
    r"""
    A base tuner model that provides the common methods and attributes for all tuners that are injectable into a
    torch.nn.Module

    For adding a new Tuner class, one needs to overwrite the following methods:

    - **_prepare_adapter_config**:
        A private method to eventually prepare the adapter config, for example in case the field `target_modules` is
        missing.
    - **_create_and_replace**:
        A private method to create and replace the target module with the adapter module.
    - **_check_target_module_exists**:
        A private helper method to check if the passed module's key name matches any of the target modules in the
        adapter_config.

    The easiest is to check what is done in the `peft.tuners.lora.LoraModel` class.

    Attributes:
        model (`torch.nn.Module`):
            The model to which the adapter tuner layers will be attached.
        forward (`Callable`):
            The forward method of the model.
        peft_config (`Union[`PeftConfig`, dict[str, PeftConfig]]`):
            The adapter configuration object, it should be a dictionary of `str` to `PeftConfig` objects. One can also
            pass a PeftConfig object and a new adapter will be created with the default name `adapter` or create a new
            dictionary with a key `adapter_name` and a value of that peft config.
        config (`dict[str, Any]`):
            The model configuration object, it should be a dictionary of `str` to `Any` objects.
        targeted_module_names (`list[str]`):
            The list of module names that were actually adapted. Can be useful to inspect if you want to quickly
            double-check that the `config.target_modules` where specified correctly.
    """

    def __init__(self, model, peft_config: Union[PeftConfig, dict[str, PeftConfig]], adapter_name: str) -> None:
        super().__init__()

        self.model = model
        self.targeted_module_names: list[str] = []

        # For advanced developers, if you want to attach multiple adapters to your
        # model, just add a `peft_config` dict attribute to your model.
        if not hasattr(self, "peft_config"):
            self.peft_config = {adapter_name: peft_config} if isinstance(peft_config, PeftConfig) else peft_config
        else:
            logger.info(
                "Already found a `peft_config` attribute in the model. This will lead to having multiple adapters"
                " in the model. Make sure to know what you are doing!"
            )
            if isinstance(peft_config, PeftConfig):
                self.peft_config[adapter_name] = peft_config
            else:
                # user is adding a dict of PeftConfigs
                self.peft_config.update(peft_config)

        self.active_adapter: str | list[str] = adapter_name
        self._pre_injection_hook(self.model, self.peft_config[adapter_name], adapter_name)
        self.inject_adapter(self.model, adapter_name)

        # Copy the peft_config in the injected model.
        self.model.peft_config = self.peft_config

    @property
    def active_adapters(self) -> list[str]:
        if isinstance(self.active_adapter, str):
            return [self.active_adapter]
        # is already a list of str
        return self.active_adapter

    def forward(self, *args: Any, **kwargs: Any):
        return self.model.forward(*args, **kwargs)

    def _pre_injection_hook(self, model: nn.Module, config: PeftConfig, adapter_name: str) -> None:
        r"""
        A hook to be called before the adapter is injected into the model. This method can be overridden by child
        classes to perform any pre-injection operations.

        Args:
            model (`nn.Module`):
                The model to be adapted.
            config (`PeftConfig`):
                The adapter config.
            adapter_name (`str`):
                The adapter name.
        """
        pass

    @abstractmethod
    def _prepare_adapter_config(self, peft_config: PeftConfig, model_config: dict) -> PeftConfig:
        r"""
        A private method to eventually prepare the adapter config. For transformers based models, if
        `peft_config.target_modules` is None, we can automatically infer the target modules from the
        `TRANSFORMERS_MODELS_TO_XXX_TARGET_MODULES_MAPPING`. This method can be further refactored in the future to
        automatically infer it for all tuner models.

        Check out `peft.tuner.lora.LoraModel._prepare_adapter_config` for an example.

        Args:
            peft_config (`PeftConfig`):
                The adapter config.
            model_config (`dict`):
                The transformers model config, that config should contain the `model_type` key.
        """
        ...

    def _prepare_model(self, peft_config: PeftConfig, model: nn.Module):
        r"""
        A private method to modify the model structure before adapter is applied.

        See `peft.tuner.lora.LoraModel._prepare_model` for an example.

        Args:
            peft_config (`PeftConfig`):
                The prepared adapter config.
            model (`nn.Module`):
                The model that is going to be adapted.
        """
        pass

    @abstractmethod
    def _check_target_module_exists(peft_config: PeftConfig, key: str) -> bool:
        r"""
        A helper private method to check if the passed module's key name matches any of the target modules in the
        `peft_config.target_modules` list. If it does, return `True`, else return `False`.

        Args:
            peft_config (`PeftConfig`):
                The adapter config.
            key (`str`):
                The module's key name.
        """
        ...

    @abstractmethod
    def _create_and_replace(
        self,
        peft_config: PeftConfig,
        adapter_name: str,
        target: nn.Module,
        target_name: str,
        parent: nn.Module,
        current_key: str,
    ) -> None:
        r"""
        Inplace replacement of the target module with the adapter layer. This method needs to be overridden by all the
        tuner classes.

        Check `peft.tuners.lora.LoraModel._create_and_replace` for an example.

        Args:
            peft_config (`PeftConfig`):
                The adapter config.
            adapter_name (`str`):
                The adapter name.
            target (`nn.Module`):
                The target module.
            target_name (`str`):
                The target module's name.
            parent (`nn.Module`):
                The parent module.
            current_key (`str`):
                The key of the current target being adapted.
        """
        ...

    @abstractmethod
    def _mark_only_adapters_as_trainable(self, model: nn.Module):
        r"""
        A helper method to mark only the adapter layers as trainable (i.e. module.requires_grad = False) This needs to
        be overridden for all tuner classes to match the correct key names.

        Check `peft.tuners.lora.LoraModel._mark_only_adapters_as_trainable` for an example.
        """
        ...

    @abstractmethod
    def disable_adapter_layers(self) -> None:
        """
        Disable all adapters in-place.
        """
        ...

    @abstractmethod
    def enable_adapter_layers(self) -> None:
        """
        Enable all adapters in-place
        """
        ...

    def _check_new_adapter_config(self, config: PeftConfig) -> None:
        """
        A helper method to check the config when a new adapter is being added.

        Raise a ValueError if there is something wrong with the config or if it conflicts with existing adapters.

        """
        pass

    def _check_merge_allowed(self):
        """Helper method to check whether the adapter can be merged.

        Raise a ValueError if it is not possible to merge the adapter with the given configuration.
        """
        pass

    def inject_adapter(self, model: nn.Module, adapter_name: str):
        r"""
        Creates adapter layers and replaces the target modules with the adapter layers. This method is called under the
        hood by `peft.mapping.get_peft_model` if a non-prompt tuning adapter class is passed.

        The corresponding PEFT config is directly retrieved from the `peft_config` attribute of the BaseTuner class.

        Args:
            model (`nn.Module`):
                The model to be tuned.
            adapter_name (`str`):
                The adapter name.
        """
        peft_config = self.peft_config[adapter_name]
        # Note: If possible, all checks should be performed *at the start of this method*.
        # This way, we can raise early if something goes wrong, without leaving the model
        # in a bad (half-initialized) state.
        self._check_new_adapter_config(peft_config)

        _check_for_modules_to_save = getattr(peft_config, "modules_to_save", None) is not None
        _has_modules_to_save = False

        model_config = getattr(model, "config", {"model_type": "custom"})
        if hasattr(model_config, "to_dict"):
            model_config = model_config.to_dict()

        peft_config = self._prepare_adapter_config(peft_config, model_config)

        self._prepare_model(peft_config, model)
        is_target_modules_in_base_model = False
        key_list = [key for key, _ in model.named_modules()]

        # update peft_config.target_modules if required
        peft_config = _maybe_include_all_linear_layers(peft_config, model)

        for key in key_list:
            # Check for modules_to_save in case
            if _check_for_modules_to_save and any(
                key.endswith(f"{module_to_save}") for module_to_save in peft_config.modules_to_save
            ):
                # Optionally set the modules to save
                parent, target, target_name = _get_submodules(model, key)

                if not isinstance(target, ModulesToSaveWrapper):
                    new_module = ModulesToSaveWrapper(target, adapter_name)
                    setattr(parent, target_name, new_module)
                else:
                    target.update(adapter_name)

                _has_modules_to_save = True
                continue

            if not self._check_target_module_exists(peft_config, key):
                continue

            self.targeted_module_names.append(key)
            is_target_modules_in_base_model = True
            parent, target, target_name = _get_submodules(model, key)
            self._create_and_replace(peft_config, adapter_name, target, target_name, parent, current_key=key)

        if not is_target_modules_in_base_model:
            raise ValueError(
                f"Target modules {peft_config.target_modules} not found in the base model. "
                f"Please check the target modules and try again."
            )

        # It's important to set the adapter here (again), because otherwise it can happen that if a 2nd adapter is
        # added, and it targets different layer(s) than the first adapter (which is active), then those different
        # layers will be activated, which we don't want.
        self.set_adapter(self.active_adapters)
        self._mark_only_adapters_as_trainable(model)

        if self.peft_config[adapter_name].inference_mode:
            for n, p in model.named_parameters():
                if adapter_name in n:
                    p.requires_grad = False

        if _has_modules_to_save:
            if not hasattr(model, "modules_to_save"):
                model.modules_to_save = set(peft_config.modules_to_save)
            else:
                model.modules_to_save.update(set(peft_config.modules_to_save))

    def merge_adapter(self, adapter_names: Optional[list[str]] = None) -> None:
        """
        This method merges the adapter layers into the base model.

        Merging adapters can lead to a speed up of the forward pass. A copy of the adapter weights is still kept in
        memory, which is required to unmerge the adapters. In order to merge the adapter weights without keeping them
        in memory, please call `merge_and_unload`.

        Args:
            safe_merge (`bool`, *optional*):
                If `True`, the merge operation will be performed in a copy of the original weights and check for NaNs
                before merging the weights. This is useful if you want to check if the merge operation will produce
                NaNs. Defaults to `False`.
            adapter_names (`list[str]`, *optional*):
                The list of adapter names that should be merged. If `None`, all active adapters will be merged.
                Defaults to `None`.
        """
        self._check_merge_allowed()
        for module in self.model.modules():
            if isinstance(module, BaseTunerLayer):
                with onload_layer(module):
                    module.merge(adapter_names=adapter_names)

    def unmerge_adapter(self):
        """
        This method unmerges all merged adapter layers from the base model.
        """
        for module in self.model.modules():
            if isinstance(module, BaseTunerLayer):
                with onload_layer(module):
                    module.unmerge()

    def _unloading_checks(self, adapter_names: Optional[list[str]]):
        adapters_to_consider = adapter_names or self.active_adapters
        is_modules_to_save_available = any(
            self.peft_config[adapter].modules_to_save for adapter in adapters_to_consider
        )
        if is_modules_to_save_available and len(adapters_to_consider) > 1:
            raise ValueError("Cannot unload multiple adapters that specify `modules_to_save`.")


class BaseTunerLayer(ABC):
    r"""
    A tuner layer mixin that provides the common methods and attributes for all tuners.

    Args:
        is_pluggable (`bool`, *optional*):
            Whether the adapter layer can be plugged to any pytorch module
        active_adapters (Union[List[`str`], `str`], *optional*):
            The name of the active adapter.
    """

    active_adapter = None

    # All names of layers that may contain adapter (trainable) weights
    adapter_layer_names: tuple[str, ...] = ()
    # All names of other parameters that may contain adapter-related parameters
    other_param_names: tuple[str, ...] = ()

    # indicates whether all adapters should be disabled
    _disable_adapters: bool = False

    # the currently active adapter(s)
    _active_adapter: str | list[str] = "default"

    # List all merged adapters
    merged_adapters: list[str] = []

    def get_base_layer(self) -> nn.Module:
        """
        (Recursively) get the base_layer.

        This is necessary for the case that the tuner layer wraps another tuner layer.

        """
        base_layer = self
        while hasattr(base_layer, "base_layer"):
            base_layer = base_layer.base_layer
        return base_layer

    @property
    def weight(self) -> torch.Tensor:
        # This is required for some transformers code, e.g. for T5, weight is accessed as:
        #     self.wo.weight
        # where "wo" is the adapter layer.
        # https://github.com/huggingface/transformers/blob/78f6ed6c70b29c1560780e3869a7ad4c6b3d2710/src/transformers
        # /models/t5/modeling_t5.py#L292
        base_layer = self.get_base_layer()
        if hasattr(base_layer, "qweight"):
            # QuantLinear
            weight = base_layer.qweight
        else:
            # Other layers
            weight = base_layer.weight
        return weight

    @property
    def bias(self) -> torch.Tensor:
        base_layer = self.get_base_layer()
        return base_layer.bias

    def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
        raise NotImplementedError

    def unmerge(self) -> None:
        raise NotImplementedError

    @property
    def merged(self) -> bool:
        return bool(self.merged_adapters)

    @property
    def disable_adapters(self) -> bool:
        # use a property to ensure that disable_adapters is not set directly, instead use the enable_adapters method
        return self._disable_adapters

    @property
    def active_adapter(self) -> str | list[str]:
        # use a property to ensure that active_adapter is not set directly, instead use the set_adapter method
        return self._active_adapter

    def _get_available_adapters(self) -> set[str]:
        """Return all adapter names that can be found on this module."""
        adapters = set()
        for layer_name in self.adapter_layer_names:
            module = getattr(self, layer_name)
            if not isinstance(module, (nn.ModuleDict, nn.ParameterDict)):
                continue
            adapters.update(set(module.keys()))
        return adapters

    @property
    def active_adapters(self):
        if isinstance(self.active_adapter, str):
            return [self.active_adapter]
        # is already a list of str
        return self.active_adapter

    def enable_adapters(self, enabled: bool) -> None:
        """Toggle the enabling and disabling of adapters

        Takes care of setting the requires_grad flag for the adapter weights.

        Args:
            enabled (bool): True to enable adapters, False to disable adapters
        """
        if enabled:
            self.set_adapter(self.active_adapters)
            self._disable_adapters = False
        else:
            # disable grads on all adapter layers
            for layer_name in self.adapter_layer_names:
                layer = getattr(self, layer_name)
                layer.requires_grad_(False)
            self._disable_adapters = True

    def set_adapter(self, adapter_names: str | list[str]) -> None:
        """Set the active adapter(s).

        Additionally, this function will set the specified adapters to trainable (i.e., requires_grad=True). If this is
        not desired, use the following code.

        ```py
        >>> for name, param in model_peft.named_parameters():
        ...     if ...:  # some check on name (ex. if 'lora' in name)
        ...         param.requires_grad = False
        ```

        Args:
            adapter_name (`str` or `List[str]`): Name of the adapter(s) to be activated.
        """
        if isinstance(adapter_names, str):
            adapter_names = [adapter_names]

        # Deactivate grads on the inactive adapter and activate grads on the active adapter
        for layer_name in self.adapter_layer_names:
            module_dict = getattr(self, layer_name)
            for key, layer in module_dict.items():
                if key in adapter_names:
                    # Note: It is possible that not a single layer is called with requires_grad_(True) here. This may
                    # happen if a completely different adapter layer is being activated.
                    layer.requires_grad_(True)
                else:
                    layer.requires_grad_(False)

        self._active_adapter = adapter_names

    def _all_available_adapter_names(self) -> list[str]:
        """Return a sorted list of all available adapter names"""
        adapter_names = set()
        for name in self.adapter_layer_names + self.other_param_names:
            # we check each possible attribute and if it's a dict or ModuleDict, we assume that the keys are the adapter
            # names
            attr = getattr(self, name)
            if hasattr(attr, "keys"):
                adapter_names.update(attr.keys())
        return sorted(adapter_names)

    def delete_adapter(self, adapter_name: str) -> None:
        """
        Delete an adapter from the layer

        This should be called on all adapter layers, or else we will get an inconsistent state.

        This method will also set a new active adapter if the deleted adapter was an active adapter. It is important
        that the new adapter is chosen in a deterministic way, so that the same adapter is chosen on all layers.

        Args:
            adapter_name (`str`): The name of the adapter to delete

        """
        for attr in self.adapter_layer_names + self.other_param_names:
            if adapter_name in getattr(self, attr):
                del getattr(self, attr)[adapter_name]

        if adapter_name in self.active_adapters:
            # choose a new active adapter
            active_adapters = self.active_adapters[:]
            active_adapters.remove(adapter_name)
            if active_adapters:
                self.set_adapter(active_adapters)
            else:
                # no active adapters left, set a new default adapter
                # here we get the list of all adapters existing adapter names and choose the first one
                remaining_adapters = self._all_available_adapter_names()
                if not remaining_adapters:
                    self.set_adapter([])
                else:
                    new_active_adapter = remaining_adapters[0]
                    warnings.warn(
                        f"Adapter {adapter_name} was active which is now deleted. Setting active adapter to "
                        f"{new_active_adapter}."
                    )
                    self.set_adapter(remaining_adapters[0])


def check_target_module_exists(config, key: str) -> bool | re.Match[str] | None:
    """A helper method to check if the passed module's key name matches any of the target modules in the adapter_config.

    Args:
        config (`LoraConfig` | `LycorisConfig`): A config to match target modules from
        key (`str`): A key to search any matches in config

    Returns:
        `bool` | `re.Match[str]` | `None`: True of match object if key matches any target modules from config, False or
        None if no match found
    """
    if isinstance(config.target_modules, str):
        target_module_found = re.fullmatch(config.target_modules, key)
    elif key in config.target_modules:
        # this module is specified directly in target_modules
        target_module_found = True
    else:
        target_module_found = any(key.endswith(f".{target_key}") for target_key in config.target_modules)

        layer_indexes = getattr(config, "layers_to_transform", None)
        layers_pattern = getattr(config, "layers_pattern", None)

        is_using_layer_indexes = layer_indexes is not None and (
            len(layer_indexes) != 0 if isinstance(layer_indexes, list) else True
        )
        if is_using_layer_indexes and target_module_found:
            layer_index = None
            # TODO: It's still unclear how empty layers_pattern (None, [], or "") should behave
            # For now, empty layers_pattern means any layer pattern is ok
            if layers_pattern is None or len(layers_pattern) == 0:
                layer_index = re.match(r".*\.[^.]*\.(\d+)\.", key)
            else:
                layers_pattern = [layers_pattern] if isinstance(layers_pattern, str) else layers_pattern
                for pattern in layers_pattern:
                    layer_index = re.match(rf".*\.{pattern}\.(\d+)\.", key)
                    if layer_index is not None:
                        break

            if layer_index is None:
                target_module_found = False
            else:
                layer_index = int(layer_index.group(1))
                if isinstance(layer_indexes, int):
                    target_module_found = layer_index == layer_indexes
                else:
                    target_module_found = layer_index in layer_indexes

    return target_module_found


def inspect_matched_modules(tuner: BaseTuner, adapter_name: str = "default") -> dict:
    """
    A helper function to inspect the set of matched and unmatched modules for a PEFT model and the given adapter.
    """
    config = tuner.peft_config[adapter_name]
    key_list = [key for key, _ in tuner.model.named_modules()]
    module_dict = {"matched": [], "unmatched": []}
    for key in key_list:
        if tuner._check_target_module_exists(config, key):
            module_dict["matched"].append(key)
        else:
            module_dict["unmatched"].append(key)
    return module_dict


def _maybe_include_all_linear_layers(peft_config: PeftConfig, model: nn.Module) -> PeftConfig:
    """
    Helper function to update `target_modules` to all linear/Conv1D layers if provided as 'all-linear'. Adapted from
    the QLoRA repository: https://github.com/artidoro/qlora/blob/main/qlora.py
    """

    # if `target_modules` is a string, convert to lower case and check if it matches "all-linear"
    if not (
        isinstance(peft_config.target_modules, str)
        and peft_config.target_modules.lower() == INCLUDE_LINEAR_LAYERS_SHORTHAND
    ):
        return peft_config

    if not isinstance(model, PreTrainedModel):
        raise ValueError(
            f"Only instances of PreTrainedModel support `target_modules={INCLUDE_LINEAR_LAYERS_SHORTHAND!r}`"
        )

    linear_classes = (torch.nn.Linear, Conv1D)

    linear_module_names = set()
    for name, module in model.named_modules():
        # match with all linear classes.
        if isinstance(module, linear_classes):
            names = name.rsplit(".", 1)[-1]  # get the base name
            linear_module_names.add(names)

    # ignore the last classification head for text generation models
    output_emb = model.get_output_embeddings()
    if output_emb is not None:
        last_module_name = [name for name, module in model.named_modules() if module is output_emb][0]
        linear_module_names -= {last_module_name}
    peft_config.target_modules = linear_module_names
    return peft_config


def check_adapters_to_merge(module: BaseTunerLayer, adapter_names: Optional[list[str]] = None) -> list[str]:
    """
    Helper function to check which adapters should be merged.

    Only return those adapters that are not already merged. Give a warning if some or all of the adapters are already
    merged.

    """
    if adapter_names is None:
        adapter_names = module.active_adapters
    if isinstance(adapter_names, str):
        raise ValueError(f"adapter_names should be a list of strings, got {adapter_names!r}.")

    if module.merged:
        merged_adapters = set(module.merged_adapters)
        adapter_names = [name for name in adapter_names if name not in merged_adapters]

        if adapter_names:
            warnings.warn(
                f"Already following adapters were merged {','.join(module.merged_adapters)}. "
                f"You are now additionally merging {','.join(adapter_names)}."
            )
        else:
            warnings.warn("All adapters are already merged, nothing to do.")

    return adapter_names


def clone_module(module: nn.Module, share_weights=False):
    """Clone a module in a pytorch model.

    Clones a module of a model, optionally sharing all the parameters between the original and the clone. Simplifies
    reusing a module when manipulating the architecture of a model.
    """
    clone = copy.deepcopy(module)

    def _share_weights(src: nn.Module, dst: nn.Module):
        for name, param in src.named_parameters(recurse=False):
            dst.register_parameter(name, param)

    if share_weights:
        for name, submodule in module.named_modules():
            _share_weights(submodule, clone.get_submodule(name))

    return clone


def replicate_layers(model: nn.Module, layer_map: list[tuple[int, int]]):
    """Replicate layers in a transfomer model with weight sharing.

    This function looks for a module list attribute at model[(.model)*].layers and replicates the layers in the module
    list according to the layer map. For example the map `[[0, 4], [2, 5]]` will take the set of layers `[0, 1, 2, 3,
    4]` and replace them with a module list containing `[0, 1, 2, 3, 2, 3, 4]`.
    """
    while hasattr(model, "model"):
        model = model.model
    # Some variants of the bert model nest the main model under the bert attribute.
    if hasattr(model, "bert"):
        model = model.bert

    model_type = None
    layers: nn.ModuleList = None
    if hasattr(model, "layers"):
        model_type = "llama"
        layers = model.layers
    elif hasattr(model, "encoder") and hasattr(model.encoder, "layer"):
        model_type = "bert"
        layers = model.encoder.layer
    elif hasattr(model, "h"):
        model_type = "falcon"
        layers = model.h
    if not model_type or not isinstance(layers, nn.ModuleList):
        raise ValueError(
            "Could not locate the layers attribute in the model. "
            "Expected Llama, Bert or Falcon compatible architectures."
        )

    new_layers = []
    for start, end in layer_map:
        for i in range(start, end):
            current_idx = len(new_layers)
            new_layers.append(clone_module(layers[i], share_weights=True))
            # This is a hack needed to work around the layer_idx introduced in HF transformers.
            for submodule in new_layers[-1].modules():
                if hasattr(submodule, "layer_idx"):
                    submodule.layer_idx = current_idx
    layers = nn.ModuleList(new_layers)
    if model_type == "llama":
        model.layers = layers
    elif model_type == "bert":
        model.encoder.layer = layers
    elif model_type == "falcon":
        model.h = layers
    else:
        raise ValueError("Unexpected model type, need to handle post-processing of layers.")
    if hasattr(model.config, "num_hidden_layers"):  # Common to Llama, Bert, Falcon.
        model.config.num_hidden_layers = len(new_layers)