File size: 8,829 Bytes
d711508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import importlib
import warnings
from typing import Any, Optional

import torch
import torch.nn as nn
import torch.nn.init as init

from peft.tuners.tuners_utils import BaseTunerLayer

from .layer import LoraLayer


class LoraParallelLinear(nn.Module, LoraLayer):
    """
    When the target layer parallel_linear is RowParallelLinear, in order to keep the input and output shapes
    consistent, we need to split the lora matrix A into rows, and the lora_B at this time should be a complete linear
    layer; In the same way, when the target layer is ColumnParallelLinear, we perform column segmentation on lora_B,
    while lora_A is still a complete linear layer.
    """

    def __init__(
        self,
        base_layer,
        adapter_name: str,
        backend,
        r: int = 0,
        lora_alpha: int = 1,
        lora_dropout: float = 0.0,
        fan_in_fan_out: bool = False,
        init_lora_weights: bool = True,
        use_rslora: bool = False,
        use_dora: bool = False,
        **kwargs,
    ):
        super().__init__()
        LoraLayer.__init__(self, base_layer=base_layer)

        if use_dora:
            raise ValueError(f"{self.__class__.__name__} does not support DoRA yet, please set it to False")

        self.backend = backend
        self.is_parallel_a = isinstance(base_layer, backend.RowParallelLinear)
        self.fan_in_fan_out = fan_in_fan_out
        self._active_adapter = adapter_name

        megatron_config = kwargs["megatron_config"]
        parallel_linear_kwargs = {"megatron_config": megatron_config}
        init_method = init.xavier_normal_
        if hasattr(megatron_config, "init_method"):
            init_method = megatron_config.init_method
        input_is_parallel = True
        gather_output = False
        if isinstance(base_layer, self.backend.RowParallelLinear):
            input_is_parallel = base_layer.input_is_parallel
        else:
            gather_output = base_layer.gather_output
        self.update_layer(
            adapter_name,
            r,
            lora_alpha=lora_alpha,
            lora_dropout=lora_dropout,
            init_lora_weights=init_lora_weights,
            use_rslora=use_rslora,
            use_dora=use_dora,
            init_method=init_method,
            input_is_parallel=input_is_parallel,
            gather_output=gather_output,
            **parallel_linear_kwargs,
        )

        self.is_target_conv_1d_layer = False

    def update_layer(
        self,
        adapter_name,
        r,
        lora_alpha,
        lora_dropout,
        init_lora_weights,
        use_rslora,
        use_dora=False,
        init_method=init.xavier_normal_,
        input_is_parallel=True,
        gather_output=False,
        **parallel_linear_kwargs,
    ):
        if r <= 0:
            raise ValueError(f"`r` should be a positive integer value but the value passed is {r}")
        self.r[adapter_name] = r
        self.lora_alpha[adapter_name] = lora_alpha
        if lora_dropout > 0.0:
            lora_dropout_layer = nn.Dropout(p=lora_dropout)
        else:
            lora_dropout_layer = nn.Identity()

        self.lora_dropout[adapter_name] = lora_dropout_layer

        megatron_config = parallel_linear_kwargs["megatron_config"]
        # lora needs to be forced to upgrade to 32-bit precision, otherwise it will overflow
        megatron_config.params_dtype = torch.float32
        if self.is_parallel_a:
            lora_a = self.backend.RowParallelLinear(
                input_size=self.in_features,
                output_size=r,
                bias=False,
                input_is_parallel=input_is_parallel,
                skip_bias_add=True,
                init_method=init_method,
                config=megatron_config,
            )
            lora_b = nn.Linear(in_features=r, out_features=self.out_features, bias=False, dtype=torch.float32)
        else:
            lora_a = nn.Linear(in_features=self.in_features, out_features=r, bias=False, dtype=torch.float32)
            lora_b = self.backend.ColumnParallelLinear(
                input_size=r,
                output_size=self.out_features,
                bias=False,
                gather_output=gather_output,
                init_method=init_method,
                config=megatron_config,
            )
        self.lora_A[adapter_name] = lora_a
        self.lora_B[adapter_name] = lora_b
        if use_rslora:
            self.scaling[adapter_name] = lora_alpha / (r**0.5)
        else:
            self.scaling[adapter_name] = lora_alpha / r
        if init_lora_weights:
            self.reset_lora_parameters(adapter_name, init_lora_weights)

        weight = getattr(self.get_base_layer(), "weight", None)
        if weight is not None:
            # the layer is already completely initialized, this is an update
            if weight.dtype.is_floating_point or weight.dtype.is_complex:
                self.to(weight.device, dtype=weight.dtype)
            else:
                self.to(weight.device)
        self.set_adapter(self.active_adapters)

    def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any):
        previous_dtype = x.dtype
        # If weight is used for matrix multiplication here, the final aggregation operation of the original
        # parallel_linear layer will be missing, so we need to directly call its forward function to obtain the
        # output of the original parallel_linear layer.
        if self.disable_adapters:
            if self.merged:
                self.unmerge()
            result, bias = self.base_layer(x, *args, **kwargs)
        elif self.merged:
            result, bias = self.base_layer(x, *args, **kwargs)
        else:
            result, bias = self.base_layer(x, *args, **kwargs)
            for active_adapter in self.active_adapters:
                if active_adapter not in self.lora_A.keys():
                    continue
                lora_A = self.lora_A[active_adapter]
                lora_B = self.lora_B[active_adapter]
                dropout = self.lora_dropout[active_adapter]
                scaling = self.scaling[active_adapter]
                x = x.to(lora_A.weight.dtype)

                lora_result = lora_A(dropout(x))
                if isinstance(lora_result, tuple):
                    lora_result = lora_result[0]
                lora_result = lora_B(lora_result)
                if isinstance(lora_result, tuple):
                    lora_result = lora_result[0]
                lora_result = lora_result * scaling

                result = result + lora_result

        result = result.to(previous_dtype)
        return result, bias


def dispatch_megatron(
    target: torch.nn.Module,
    adapter_name: str,
    lora_config,
    **kwargs: Any,
) -> Optional[torch.nn.Module]:
    new_module = None

    if isinstance(target, BaseTunerLayer):
        target_base_layer = target.get_base_layer()
    else:
        target_base_layer = target

    if lora_config.megatron_config:
        megatron_core = importlib.import_module(lora_config.megatron_core)
    else:
        megatron_core = None

    if megatron_core and isinstance(
        target_base_layer,
        (megatron_core.tensor_parallel.ColumnParallelLinear, megatron_core.tensor_parallel.RowParallelLinear),
    ):
        megatron_kwargs = kwargs.copy()
        megatron_config = lora_config.megatron_config
        if isinstance(megatron_config, dict):
            transformer_config_class = megatron_core.transformer.transformer_config.TransformerConfig
            megatron_config = transformer_config_class(**lora_config.megatron_config)
        megatron_kwargs["megatron_config"] = megatron_config
        if megatron_kwargs["fan_in_fan_out"]:
            warnings.warn(
                "fan_in_fan_out is set to True but the target module is `ColumnParallelLinear` "
                "or `RowParallelLinear`. "
                "Setting fan_in_fan_out to False."
            )
            megatron_kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = False
        new_module = LoraParallelLinear(
            base_layer=target, adapter_name=adapter_name, backend=megatron_core.tensor_parallel, **megatron_kwargs
        )

    return new_module