File size: 8,394 Bytes
d711508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# -*- coding:utf-8 -*-
import os
import sys
import shutil
from tqdm import tqdm
import yaml

import random
import importlib
from PIL import Image
import imageio

import numpy as np
import cv2
import torch
from torchvision import utils

from scipy.interpolate import PchipInterpolator

def split_filename(filename):
    absname = os.path.abspath(filename)
    dirname, basename = os.path.split(absname)
    split_tmp = basename.rsplit('.', maxsplit=1)
    if len(split_tmp) == 2:
        rootname, extname = split_tmp
    elif len(split_tmp) == 1:
        rootname = split_tmp[0]
        extname = None
    else:
        raise ValueError("programming error!")
    return dirname, rootname, extname


def data2file(data, filename, type=None, override=False, printable=False, **kwargs):
    dirname, rootname, extname = split_filename(filename)
    print_did_not_save_flag = True
    if type:
        extname = type
    if not os.path.exists(dirname):
        os.makedirs(dirname, exist_ok=True)

    if not os.path.exists(filename) or override:
        if extname in ['jpg', 'png', 'jpeg']:
            utils.save_image(data, filename, **kwargs)
        elif extname == 'gif':
            imageio.mimsave(filename, data, format='GIF', duration=kwargs.get('duration'), loop=0)
        elif extname == 'txt':
            if kwargs is None:
                kwargs = {}
            max_step = kwargs.get('max_step')
            if max_step is None:
                max_step = np.Infinity

            with open(filename, 'w', encoding='utf-8') as f:
                for i, e in enumerate(data):
                    if i < max_step:
                        f.write(str(e) + '\n')
                    else:
                        break
        else:
            raise ValueError('Do not support this type')
        if printable: print('Saved data to %s' % os.path.abspath(filename))
    else:
        if print_did_not_save_flag: print(
            'Did not save data to %s because file exists and override is False' % os.path.abspath(
                filename))


def file2data(filename, type=None, printable=True, **kwargs):
    dirname, rootname, extname = split_filename(filename)
    print_load_flag = True
    if type:
        extname = type
    
    if extname in ['pth', 'ckpt', 'bin']:
        data = torch.load(filename, map_location=kwargs.get('map_location'))
        if "state_dict" in data.keys():
            data = data["state_dict"]
        data = {k.replace("_forward_module.", ""):v for k,v in data.items()}
    elif extname == 'txt':
        top = kwargs.get('top', None)
        with open(filename, encoding='utf-8') as f:
            if top:
                data = [f.readline() for _ in range(top)]
            else:
                data = [e for e in f.read().split('\n') if e]
    elif extname == 'yaml':
        with open(filename, 'r') as f:
            data = yaml.load(f)
        
    else:
        raise ValueError('type can only support h5, npy, json, txt')
    if printable:
        if print_load_flag:
            print('Loaded data from %s' % os.path.abspath(filename))
    return data


def ensure_dirname(dirname, override=False):
    if os.path.exists(dirname) and override:
        print('Removing dirname: %s' % os.path.abspath(dirname))
        try:
            shutil.rmtree(dirname)
        except OSError as e:
            raise ValueError('Failed to delete %s because %s' % (dirname, e))

    if not os.path.exists(dirname):
        print('Making dirname: %s' % os.path.abspath(dirname))
        os.makedirs(dirname, exist_ok=True)


def import_filename(filename):
    spec = importlib.util.spec_from_file_location("mymodule", filename)
    module = importlib.util.module_from_spec(spec)
    sys.modules[spec.name] = module
    spec.loader.exec_module(module)
    return module


def adaptively_load_state_dict(target, state_dict):
    target_dict = target.state_dict()

    try:
        common_dict = {k: v for k, v in state_dict.items() if k in target_dict and v.size() == target_dict[k].size()}
        # unmatch_dict = {k: v for k, v in state_dict.items() if k not in target_dict or v.size() != target_dict[k].size()}
    except Exception as e:
        print('load error %s', e)
        common_dict = {k: v for k, v in state_dict.items() if k in target_dict}

    if 'param_groups' in common_dict and common_dict['param_groups'][0]['params'] != \
            target.state_dict()['param_groups'][0]['params']:
        print('Detected mismatch params, auto adapte state_dict to current')
        common_dict['param_groups'][0]['params'] = target.state_dict()['param_groups'][0]['params']
    target_dict.update(common_dict)
    target.load_state_dict(target_dict)

    missing_keys = [k for k in target_dict.keys() if k not in common_dict]
    unexpected_keys = [k for k in state_dict.keys() if k not in common_dict]

    if len(unexpected_keys) != 0:
        print(
            f"Some weights of state_dict were not used in target: {unexpected_keys}"
        )
    if len(missing_keys) != 0:
        print(
            f"Some weights of state_dict are missing used in target {missing_keys}"
        )
    if len(unexpected_keys) == 0 and len(missing_keys) == 0:
        print("Strictly Loaded state_dict.")


def set_seed(seed=42):
    random.seed(seed)
    os.environ['PYHTONHASHSEED'] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.backends.cudnn.deterministic = True


def image2pil(filename):
    return Image.open(filename)


def image2arr(filename):
    pil = image2pil(filename)
    return pil2arr(pil)


def pil2arr(pil):
    if isinstance(pil, list):
        arr = np.array(
            [np.array(e.convert('RGB').getdata(), dtype=np.uint8).reshape(e.size[1], e.size[0], 3) for e in pil])
    else:
        arr = np.array(pil)
    return arr


def arr2pil(arr):
    if arr.ndim == 3:
        return Image.fromarray(arr.astype('uint8'), 'RGB')
    elif arr.ndim == 4:
        return [Image.fromarray(e.astype('uint8'), 'RGB') for e in list(arr)]
    else:
        raise ValueError('arr must has ndim of 3 or 4, but got %s' % arr.ndim)


def interpolate_trajectory(points, n_points):
    x = [point[0] for point in points]
    y = [point[1] for point in points]

    t = np.linspace(0, 1, len(points))

    fx = PchipInterpolator(t, x)
    fy = PchipInterpolator(t, y)

    new_t = np.linspace(0, 1, n_points)

    new_x = fx(new_t)
    new_y = fy(new_t)
    new_points = list(zip(new_x, new_y))

    return new_points

def visualize_drag(background_image_path, splited_tracks, drag_mode, width, height, model_length):
    if drag_mode=='object':
        color = (255, 0, 0, 255)
    elif drag_mode=='camera':
        color = (0, 0, 255, 255)
    background_image = Image.open(background_image_path).convert('RGBA')
    background_image = background_image.resize((width, height))
    w, h = background_image.size
    transparent_background = np.array(background_image)
    transparent_background[:, :, -1] = 128
    transparent_background = Image.fromarray(transparent_background)

    # Create a transparent layer with the same size as the background image
    transparent_layer = np.zeros((h, w, 4))
    for splited_track in splited_tracks:
        if len(splited_track) > 1:
            splited_track = interpolate_trajectory(splited_track, model_length)
            splited_track = splited_track[:model_length]
            for i in range(len(splited_track)-1):
                start_point = (int(splited_track[i][0]), int(splited_track[i][1]))
                end_point = (int(splited_track[i+1][0]), int(splited_track[i+1][1]))
                vx = end_point[0] - start_point[0]
                vy = end_point[1] - start_point[1]
                arrow_length = np.sqrt(vx**2 + vy**2)
                if i == len(splited_track)-2:
                    cv2.arrowedLine(transparent_layer, start_point, end_point, color, 2, tipLength=8 / arrow_length)
                else:
                    cv2.line(transparent_layer, start_point, end_point, color, 2)
        else:
            cv2.circle(transparent_layer, (int(splited_track[0][0]), int(splited_track[0][1])), 5, color, -1)

    transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
    trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
    return trajectory_map, transparent_layer