Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,905 Bytes
d711508 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from typing import List, Literal
import torch
def reshape_weight_task_tensors(task_tensors, weights):
"""
Reshapes `weights` to match the shape of `task_tensors` by unsqeezing in the remaining dimenions.
Args:
task_tensors (`torch.Tensor`): The tensors that will be used to reshape `weights`.
weights (`torch.Tensor`): The tensor to be reshaped.
Returns:
`torch.Tensor`: The reshaped tensor.
"""
new_shape = weights.shape + (1,) * (task_tensors.dim() - weights.dim())
weights = weights.view(new_shape)
return weights
def magnitude_based_pruning(tensor: torch.Tensor, density: float) -> torch.Tensor:
"""
Prune the smallest values of the task tensors and retain the top-k values based on the specified fraction
`density`.
Args:
tensor (`torch.Tensor`):The tensor to prune.
density (`float`):The fraction of values to preserve. Should be in [0,1].
Returns:
`torch.Tensor`: The tensor with the pruned weights.
"""
mask = torch.zeros_like(tensor).reshape(-1)
k = int(density * tensor.numel())
top_k = torch.topk(tensor.abs().reshape(-1), k=k, largest=True)
mask[top_k[1]] = 1
return tensor * mask.reshape(tensor.shape)
def random_pruning(tensor: torch.Tensor, density: float, rescale: bool) -> torch.Tensor:
"""
Prune random values based on the specified fraction `density`.
Args:
tensor (`torch.Tensor`):The tensor to prune.
density (`float`):The fraction of values to preserve. Should be in [0,1].
rescale (`bool`):Whether to rescale the result to preserve the expected value of the original tensor.
Returns:
`torch.Tensor`: The pruned tensor.
"""
mask = torch.bernoulli(torch.full_like(input=tensor, fill_value=density))
pruned_tensor = tensor * mask
if rescale:
torch.div(input=pruned_tensor, other=density)
return pruned_tensor
def prune(
tensor: torch.Tensor, density: float, method: Literal["magnitude", "random"], rescale: bool = False
) -> torch.Tensor:
"""
Prune the values of task tensors based on the `method`.
Args:
tensor (`torch.Tensor`):The tensor to prune.
density (`float`):The fraction of values to preserve. Should be in [0,1].
method (`str`):The method to use to prune. Should be one of ["magnitude", "random"].
rescale (`bool`):Whether to rescale the result to preserve the expected value of the original tensor.
Returns:
`torch.Tensor`: The pruned tensor.
"""
if density >= 1:
warnings.warn(f"The density {density} is greater than or equal to 1, no pruning will be performed.")
return tensor
elif density < 0:
raise ValueError(f"Density should be >= 0, got {density}")
if method == "magnitude":
return magnitude_based_pruning(tensor, density)
elif method == "random":
return random_pruning(tensor, density, rescale=rescale)
else:
raise ValueError(f"Unknown method {method}")
def calculate_majority_sign_mask(
tensor: torch.Tensor, method: Literal["total", "frequency"] = "total"
) -> torch.Tensor:
"""
Get the mask of the majority sign across the task tensors. Task tensors are stacked on dimension 0.
Args:
tensor (`torch.Tensor`):The tensor to get the mask from.
method (`str`):The method to use to get the mask. Should be one of ["total", "frequency"].
Returns:
`torch.Tensor`: The majority sign mask.
"""
sign = tensor.sign()
if method == "total":
sign_magnitude = tensor.sum(dim=0)
elif method == "frequency":
sign_magnitude = sign.sum(dim=0)
else:
raise RuntimeError(f'Unimplemented mask method "{method}"')
majority_sign = torch.where(sign_magnitude >= 0, 1, -1)
return sign == majority_sign
def disjoint_merge(task_tensors: torch.Tensor, majority_sign_mask: torch.Tensor) -> torch.Tensor:
"""
Merge the task tensors using disjoint merge.
Args:
task_tensors (`torch.Tensor`):The task tensors to merge.
majority_sign_mask (`torch.Tensor`):The mask of the majority sign across the task tensors.
Returns:
`torch.Tensor`: The merged tensor.
"""
mixed_task_tensors = (task_tensors * majority_sign_mask).sum(dim=0)
num_params_preserved = majority_sign_mask.sum(dim=0)
return mixed_task_tensors / torch.clamp(num_params_preserved, min=1.0)
def task_arithmetic(task_tensors: List[torch.Tensor], weights: torch.Tensor) -> torch.Tensor:
"""
Merge the task tensors using `task arithmetic`.
Args:
task_tensors(`List[torch.Tensor]`):The task tensors to merge.
weights (`torch.Tensor`):The weights of the task tensors.
Returns:
`torch.Tensor`: The merged tensor.
"""
task_tensors = torch.stack(task_tensors, dim=0)
# weighted task tensors
weights = reshape_weight_task_tensors(task_tensors, weights)
weighted_task_tensors = task_tensors * weights
mixed_task_tensors = weighted_task_tensors.sum(dim=0)
return mixed_task_tensors
def magnitude_prune(task_tensors: List[torch.Tensor], weights: torch.Tensor, density: float) -> torch.Tensor:
"""
Merge the task tensors using `task arithmetic`.
Args:
task_tensors(`List[torch.Tensor]`):The task tensors to merge.
weights (`torch.Tensor`):The weights of the task tensors.
density (`float`): The fraction of values to preserve. Should be in [0,1].
Returns:
`torch.Tensor`: The merged tensor.
"""
# sparsify
task_tensors = [prune(tensor, density, method="magnitude") for tensor in task_tensors]
task_tensors = torch.stack(task_tensors, dim=0)
# weighted task tensors
weights = reshape_weight_task_tensors(task_tensors, weights)
weighted_task_tensors = task_tensors * weights
mixed_task_tensors = weighted_task_tensors.sum(dim=0)
return mixed_task_tensors
def ties(
task_tensors: List[torch.Tensor],
weights: torch.Tensor,
density: float,
majority_sign_method: Literal["total", "frequency"] = "total",
) -> torch.Tensor:
"""
Merge the task tensors using `ties`.
Args:
task_tensors(`List[torch.Tensor]`):The task tensors to merge.
weights (`torch.Tensor`):The weights of the task tensors.
density (`float`):The fraction of values to preserve. Should be in [0,1].
majority_sign_method (`str`):
The method to use to get the majority sign mask. Should be one of ["total", "frequency"].
Returns:
`torch.Tensor`: The merged tensor.
"""
# sparsify
task_tensors = [prune(tensor, density, method="magnitude") for tensor in task_tensors]
task_tensors = torch.stack(task_tensors, dim=0)
# Elect Sign
majority_sign_mask = calculate_majority_sign_mask(task_tensors, method=majority_sign_method)
# weighted task tensors
weights = reshape_weight_task_tensors(task_tensors, weights)
weighted_task_tensors = task_tensors * weights
# Disjoint Merge
mixed_task_tensors = disjoint_merge(weighted_task_tensors, majority_sign_mask)
return mixed_task_tensors
def dare_linear(task_tensors: List[torch.Tensor], weights: torch.Tensor, density: float) -> torch.Tensor:
"""
Merge the task tensors using `dare linear`.
Args:
task_tensors(`List[torch.Tensor]`):The task tensors to merge.
weights (`torch.Tensor`):The weights of the task tensors.
density (`float`):The fraction of values to preserve. Should be in [0,1].
Returns:
`torch.Tensor`: The merged tensor.
"""
# sparsify
task_tensors = [prune(tensor, density, method="random", rescale=True) for tensor in task_tensors]
task_tensors = torch.stack(task_tensors, dim=0)
# weighted task tensors
weights = reshape_weight_task_tensors(task_tensors, weights)
weighted_task_tensors = task_tensors * weights
mixed_task_tensors = weighted_task_tensors.sum(dim=0)
return mixed_task_tensors
def dare_ties(
task_tensors: List[torch.Tensor],
weights: torch.Tensor,
density: float,
majority_sign_method: Literal["total", "frequency"] = "total",
) -> torch.Tensor:
"""
Merge the task tensors using `dare ties`.
Args:
task_tensors(`List[torch.Tensor]`):The task tensors to merge.
weights (`torch.Tensor`):The weights of the task tensors.
density (`float`):The fraction of values to preserve. Should be in [0,1].
majority_sign_method (`str`):
The method to use to get the majority sign mask. Should be one of ["total", "frequency"].
Returns:
`torch.Tensor`: The merged tensor.
"""
# sparsify
task_tensors = [prune(tensor, density, method="random", rescale=True) for tensor in task_tensors]
task_tensors = torch.stack(task_tensors, dim=0)
# Elect Sign
majority_sign_mask = calculate_majority_sign_mask(task_tensors, method=majority_sign_method)
# weighted task tensors
weights = reshape_weight_task_tensors(task_tensors, weights)
weighted_task_tensors = task_tensors * weights
# Disjoint Merge
mixed_task_tensors = disjoint_merge(weighted_task_tensors, majority_sign_mask)
return mixed_task_tensors
|