Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,606 Bytes
d711508 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Any, Set, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from peft.tuners.lycoris_utils import LycorisLayer
class LoHaLayer(nn.Module, LycorisLayer):
# All names of layers that may contain adapter weights
adapter_layer_names = ("hada_w1_a", "hada_w1_b", "hada_w2_a", "hada_w2_b", "hada_t1", "hada_t2")
# other_param_names is defined on parent class
def __init__(self, base_layer: nn.Module):
super().__init__()
LycorisLayer.__init__(self, base_layer)
# LoHa info
self.hada_w1_a = nn.ParameterDict({})
self.hada_w1_b = nn.ParameterDict({})
self.hada_w2_a = nn.ParameterDict({})
self.hada_w2_b = nn.ParameterDict({})
self.hada_t1 = nn.ParameterDict({})
self.hada_t2 = nn.ParameterDict({})
@property
def _available_adapters(self) -> Set[str]:
return {*self.hada_w1_a, *self.hada_w1_b, *self.hada_w2_a, *self.hada_w2_b, *self.hada_t1, *self.hada_t2}
def create_adapter_parameters(self, adapter_name: str, r: int, shape: Tuple[int, ...]):
# https://github.com/KohakuBlueleaf/LyCORIS/blob/eb460098187f752a5d66406d3affade6f0a07ece/lycoris/modules/loha.py#L130C9-L143C75
if len(shape) == 4:
self.hada_t1[adapter_name] = nn.Parameter(torch.empty(r, r, shape[2], shape[3]))
self.hada_w1_a[adapter_name] = nn.Parameter(torch.empty(r, shape[0])) # out_dim, 1-mode
self.hada_w1_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1])) # in_dim , 2-mode
self.hada_t2[adapter_name] = nn.Parameter(torch.empty(r, r, shape[2], shape[3]))
self.hada_w2_a[adapter_name] = nn.Parameter(torch.empty(r, shape[0])) # out_dim, 1-mode
self.hada_w2_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1])) # in_dim , 2-mode
else:
self.hada_w1_a[adapter_name] = nn.Parameter(torch.empty(shape[0], r))
self.hada_w1_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1]))
self.hada_w2_a[adapter_name] = nn.Parameter(torch.empty(shape[0], r))
self.hada_w2_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1]))
def reset_adapter_parameters(self, adapter_name: str):
# Original implementation performs initialization with normal distribution
# https://github.com/KohakuBlueleaf/LyCORIS/blob/3549fdef8f564761d68b695a08ef88b1122fdedc/lycoris/modules/loha.py#L158
# FedPara paper proposes to perform He initialization, let's stick with it
# It is enough to initialize only single matrix with zeros to make adapter do nothing after initialization
if adapter_name in self.hada_w1_a.keys():
nn.init.kaiming_uniform_(self.hada_w1_a[adapter_name], a=math.sqrt(5))
nn.init.kaiming_uniform_(self.hada_w1_b[adapter_name], a=math.sqrt(5))
nn.init.kaiming_uniform_(self.hada_w2_a[adapter_name], a=math.sqrt(5))
nn.init.zeros_(self.hada_w2_b[adapter_name])
if adapter_name in self.hada_t1.keys():
nn.init.kaiming_uniform_(self.hada_t1[adapter_name], a=math.sqrt(5))
nn.init.kaiming_uniform_(self.hada_t2[adapter_name], a=math.sqrt(5))
def reset_adapter_parameters_random(self, adapter_name: str):
# Original implementation performs initialization with normal distribution
# https://github.com/KohakuBlueleaf/LyCORIS/blob/3549fdef8f564761d68b695a08ef88b1122fdedc/lycoris/modules/loha.py#L158
# FedPara paper proposes to perform He initialization, let's stick with it
# It is enough to initialize only single matrix with zeros to make adapter do nothing after initialization
if adapter_name in self.hada_w1_a.keys():
nn.init.kaiming_uniform_(self.hada_w1_a[adapter_name], a=math.sqrt(5))
nn.init.kaiming_uniform_(self.hada_w1_b[adapter_name], a=math.sqrt(5))
nn.init.kaiming_uniform_(self.hada_w2_a[adapter_name], a=math.sqrt(5))
nn.init.kaiming_uniform_(self.hada_w2_b[adapter_name], a=math.sqrt(5))
if adapter_name in self.hada_t1.keys():
nn.init.kaiming_uniform_(self.hada_t1[adapter_name], a=math.sqrt(5))
nn.init.kaiming_uniform_(self.hada_t2[adapter_name], a=math.sqrt(5))
def update_layer(
self,
adapter_name: str,
r: int,
alpha: float,
rank_dropout: float,
module_dropout: float,
init_weights: bool,
use_effective_conv2d: bool = False,
**kwargs,
) -> None:
"""Internal function to create loha adapter
Args:
adapter_name (`str`): Name for the adapter to add.
r (`int`): Rank for the added adapter.
alpha (`float`): Alpha for the added adapter.
rank_dropout (`float`): The dropout probability for rank dimension during training.
module_dropout (`float`): The dropout probability for disabling adapter during training.
init_weights (`bool`): Whether to initialize weights.
use_effective_conv2d (`bool`, *optional*, defaults to `False`):
Use parameter effective decomposition for Conv2d with ksize > 1.
"""
if r <= 0:
raise ValueError(f"`r` should be a positive integer value but the value passed is {r}")
self.r[adapter_name] = r
self.alpha[adapter_name] = alpha
self.scaling[adapter_name] = alpha / r
self.rank_dropout[adapter_name] = rank_dropout
self.module_dropout[adapter_name] = module_dropout
# Determine shape of LoHa weights
base_layer = self.get_base_layer()
if isinstance(base_layer, nn.Linear):
shape = tuple(base_layer.weight.shape)
elif isinstance(base_layer, nn.Conv2d):
use_effective_conv2d = use_effective_conv2d and base_layer.kernel_size != (1, 1)
if use_effective_conv2d:
shape = (base_layer.out_channels, base_layer.in_channels, *base_layer.kernel_size)
else:
shape = (
base_layer.out_channels,
base_layer.in_channels * base_layer.kernel_size[0] * base_layer.kernel_size[1],
)
else:
raise TypeError(f"LoHa is not implemented for base layers of type {type(base_layer).__name__}")
# Create weights with provided shape
self.create_adapter_parameters(adapter_name, r, shape)
# Initialize weights
if init_weights:
self.reset_adapter_parameters(adapter_name)
else:
self.reset_adapter_parameters_random(adapter_name)
# Move new weights to device
weight = getattr(self.get_base_layer(), "weight", None)
if weight is not None:
# the layer is already completely initialized, this is an update
if weight.dtype.is_floating_point or weight.dtype.is_complex:
self.to(weight.device, dtype=weight.dtype)
else:
self.to(weight.device)
self.set_adapter(self.active_adapters)
def get_delta_weight(self, adapter_name: str) -> torch.Tensor:
# https://github.com/KohakuBlueleaf/LyCORIS/blob/eb460098187f752a5d66406d3affade6f0a07ece/lycoris/modules/loha.py#L178
if adapter_name in self.hada_t1.keys():
weight = make_weight_cp(
self.hada_t1[adapter_name],
self.hada_w1_a[adapter_name],
self.hada_w1_b[adapter_name],
self.hada_t2[adapter_name],
self.hada_w2_a[adapter_name],
self.hada_w2_b[adapter_name],
scale=torch.tensor(self.scaling[adapter_name]),
)
else:
weight = make_weight(
self.hada_w1_a[adapter_name],
self.hada_w1_b[adapter_name],
self.hada_w2_a[adapter_name],
self.hada_w2_b[adapter_name],
scale=torch.tensor(self.scaling[adapter_name]),
)
base_layer = self.get_base_layer()
weight = weight.reshape(base_layer.weight.shape)
# Perform rank dropout during training - drop rows of addition weights
rank_dropout = self.rank_dropout[adapter_name]
if self.training and rank_dropout:
drop = (torch.rand(weight.size(0)) > rank_dropout).to(weight.dtype)
drop = drop.view(-1, *[1] * len(weight.shape[1:])).to(weight.device)
# TODO: Investigate if there should be a scaler like in normal dropout during training
# Original implementation doesn't have it
# https://github.com/KohakuBlueleaf/LyCORIS/blob/eb460098187f752a5d66406d3affade6f0a07ece/lycoris/modules/loha.py#L193
drop /= drop.mean()
weight *= drop
return weight
def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
previous_dtype = x.dtype
if self.disable_adapters:
if self.merged:
self.unmerge()
result = self.base_layer(x, *args, **kwargs)
elif self.merged:
result = self.base_layer(x, *args, **kwargs)
else:
result = self.base_layer(x, *args, **kwargs)
# Execute all the adapters
for active_adapter in self.active_adapters:
if active_adapter not in self._available_adapters:
continue
module_dropout = self.module_dropout[active_adapter]
# Modify current execution weights
if (not self.training) or (self.training and torch.rand(1) > module_dropout):
result = result + self._get_delta_activations(active_adapter, x, *args, **kwargs)
result = result.to(previous_dtype)
return result
class Linear(LoHaLayer):
"""LoHa implemented in Linear layer"""
def __init__(
self,
base_layer: nn.Module,
adapter_name: str = "default",
r: int = 0,
alpha: float = 0.0,
rank_dropout: float = 0.0,
module_dropout: float = 0.0,
init_weights: bool = True,
**kwargs,
):
super().__init__(base_layer)
# Create adapter and set it active
self._active_adapter = adapter_name
self.update_layer(adapter_name, r, alpha, rank_dropout, module_dropout, init_weights, **kwargs)
def _get_delta_activations(
self, adapter_name: str, input: torch.Tensor, *args: Any, **kwargs: Any
) -> torch.Tensor:
delta_weight = self.get_delta_weight(adapter_name)
# don't add bias here, because the bias is already included in the output of the base_layer
return F.linear(input, delta_weight)
def __repr__(self) -> str:
rep = super().__repr__()
return "loha." + rep
class Conv2d(LoHaLayer):
"""LoHa implemented in Conv2d layer"""
def __init__(
self,
base_layer: nn.Module,
adapter_name: str = "default",
r: int = 0,
alpha: float = 0.0,
rank_dropout: float = 0.0,
module_dropout: float = 0.0,
use_effective_conv2d: bool = False,
init_weights: bool = True,
**kwargs,
):
super().__init__(base_layer)
# Create adapter and set it active
self._active_adapter = adapter_name
self.update_layer(
adapter_name, r, alpha, rank_dropout, module_dropout, init_weights, use_effective_conv2d, **kwargs
)
def _get_delta_activations(
self, adapter_name: str, input: torch.Tensor, *args: Any, **kwargs: Any
) -> torch.Tensor:
delta_weight = self.get_delta_weight(adapter_name)
# don't add bias here, because the bias is already included in the output of the base_layer
base_layer = self.get_base_layer()
return F.conv2d(
input,
delta_weight,
stride=base_layer.stride,
padding=base_layer.padding,
dilation=base_layer.dilation,
groups=base_layer.groups,
)
def __repr__(self) -> str:
rep = super().__repr__()
return "loha." + rep
# Below code is a direct copy from https://github.com/KohakuBlueleaf/LyCORIS/blob/eb460098187f752a5d66406d3affade6f0a07ece/lycoris/modules/loha.py#L9
class HadaWeight(torch.autograd.Function):
@staticmethod
def forward(ctx, w1a, w1b, w2a, w2b, scale=torch.tensor(1)):
ctx.save_for_backward(w1a, w1b, w2a, w2b, scale)
diff_weight = ((w1a @ w1b) * (w2a @ w2b)) * scale
return diff_weight
@staticmethod
def backward(ctx, grad_out):
(w1a, w1b, w2a, w2b, scale) = ctx.saved_tensors
grad_out = grad_out * scale
temp = grad_out * (w2a @ w2b)
grad_w1a = temp @ w1b.T
grad_w1b = w1a.T @ temp
temp = grad_out * (w1a @ w1b)
grad_w2a = temp @ w2b.T
grad_w2b = w2a.T @ temp
del temp
return grad_w1a, grad_w1b, grad_w2a, grad_w2b, None
class HadaWeightCP(torch.autograd.Function):
@staticmethod
def forward(ctx, t1, w1a, w1b, t2, w2a, w2b, scale=torch.tensor(1)):
ctx.save_for_backward(t1, w1a, w1b, t2, w2a, w2b, scale)
rebuild1 = torch.einsum("i j k l, j r, i p -> p r k l", t1, w1b, w1a)
rebuild2 = torch.einsum("i j k l, j r, i p -> p r k l", t2, w2b, w2a)
return rebuild1 * rebuild2 * scale
@staticmethod
def backward(ctx, grad_out):
(t1, w1a, w1b, t2, w2a, w2b, scale) = ctx.saved_tensors
grad_out = grad_out * scale
temp = torch.einsum("i j k l, j r -> i r k l", t2, w2b)
rebuild = torch.einsum("i j k l, i r -> r j k l", temp, w2a)
grad_w = rebuild * grad_out
del rebuild
grad_w1a = torch.einsum("r j k l, i j k l -> r i", temp, grad_w)
grad_temp = torch.einsum("i j k l, i r -> r j k l", grad_w, w1a.T)
del grad_w, temp
grad_w1b = torch.einsum("i r k l, i j k l -> r j", t1, grad_temp)
grad_t1 = torch.einsum("i j k l, j r -> i r k l", grad_temp, w1b.T)
del grad_temp
temp = torch.einsum("i j k l, j r -> i r k l", t1, w1b)
rebuild = torch.einsum("i j k l, i r -> r j k l", temp, w1a)
grad_w = rebuild * grad_out
del rebuild
grad_w2a = torch.einsum("r j k l, i j k l -> r i", temp, grad_w)
grad_temp = torch.einsum("i j k l, i r -> r j k l", grad_w, w2a.T)
del grad_w, temp
grad_w2b = torch.einsum("i r k l, i j k l -> r j", t2, grad_temp)
grad_t2 = torch.einsum("i j k l, j r -> i r k l", grad_temp, w2b.T)
del grad_temp
return grad_t1, grad_w1a, grad_w1b, grad_t2, grad_w2a, grad_w2b, None
def make_weight(w1a, w1b, w2a, w2b, scale):
return HadaWeight.apply(w1a, w1b, w2a, w2b, scale)
def make_weight_cp(t1, w1a, w1b, t2, w2a, w2b, scale):
return HadaWeightCP.apply(t1, w1a, w1b, t2, w2a, w2b, scale)
|