File size: 15,591 Bytes
d711508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import warnings
from typing import Any, List, Optional, Set, Tuple

import torch
import torch.nn as nn

from peft.tuners.lycoris_utils import LycorisLayer, check_adapters_to_merge


class OFTLayer(nn.Module, LycorisLayer):
    # All names of layers that may contain adapter weights
    adapter_layer_names = ("oft_r",)
    # other_param_names is defined on parent class

    def __init__(self, base_layer: nn.Module):
        super().__init__()
        LycorisLayer.__init__(self, base_layer)

        # OFT info
        self.oft_r = nn.ParameterDict({})
        self.coft = {}
        self.eps = {}
        self.block_share = {}

    @property
    def _available_adapters(self) -> Set[str]:
        return {*self.oft_r}

    def create_adapter_parameters(self, adapter_name: str, r: int, shape: Tuple[int, ...], block_share: bool):
        if block_share:
            self.oft_r[adapter_name] = nn.Parameter(torch.empty(1, math.ceil(shape[0] / r), math.ceil(shape[0] / r)))
        else:
            self.oft_r[adapter_name] = nn.Parameter(torch.empty(r, math.ceil(shape[0] / r), math.ceil(shape[0] / r)))

    def reset_adapter_parameters(self, adapter_name: str):
        nn.init.zeros_(self.oft_r[adapter_name])

    def reset_adapter_parameters_random(self, adapter_name: str):
        nn.init.kaiming_uniform_(self.oft_r[adapter_name], a=math.sqrt(5))

    def update_layer(
        self,
        adapter_name: str,
        r: int,
        module_dropout: float,
        init_weights: bool,
        coft: bool = False,
        eps: float = 6e-5,
        block_share: bool = False,
        **kwargs,
    ) -> None:
        """Internal function to create oft adapter

        Args:
            adapter_name (`str`): Name for the adapter to add.
            r (`int`): Rank for the added adapter.
            module_dropout (`float`): The dropout probability for disabling adapter during training.
            init_weights (`bool`): Whether to initialize weights.
            coft (`bool`): Whether to use the constrained variant of OFT or not.
            eps (`float`):
                The control strength of COFT. The freedom of rotation. Only has an effect if `coft` is set to True.
            block_share (`bool`): Whether to share the OFT parameters between blocks or not.
        """
        if r <= 0:
            raise ValueError(f"`r` should be a positive integer value but the value passed is {r}")

        self.r[adapter_name] = r
        self.module_dropout[adapter_name] = module_dropout
        self.coft[adapter_name] = coft
        self.block_share[adapter_name] = block_share

        # Determine shape of OFT weights
        base_layer = self.get_base_layer()
        if isinstance(base_layer, nn.Linear):
            shape = tuple(base_layer.weight.shape)
        elif isinstance(base_layer, nn.Conv2d):
            shape = (
                base_layer.out_channels,
                base_layer.in_channels * base_layer.kernel_size[0] * base_layer.kernel_size[1],
            )
        else:
            raise TypeError(f"OFT is not implemented for base layers of type {type(base_layer).__name__}")

        self.eps[adapter_name] = eps * math.ceil(shape[0] / r) * math.ceil(shape[0] / r)

        # Create weights with provided shape
        self.create_adapter_parameters(adapter_name, r, shape, block_share)

        # Initialize weights
        if init_weights:
            self.reset_adapter_parameters(adapter_name)
        else:
            self.reset_adapter_parameters_random(adapter_name)

        # Move new weights to device
        weight = getattr(self.get_base_layer(), "weight", None)
        if weight is not None:
            # the layer is already completely initialized, this is an update
            if weight.dtype.is_floating_point or weight.dtype.is_complex:
                self.to(weight.device, dtype=weight.dtype)
            else:
                self.to(weight.device)
        self.set_adapter(self.active_adapters)

    def unscale_layer(self, scale=None) -> None:
        # scale is not used
        pass

    def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None:
        """
        Merge the active adapter weights into the base weights

        Args:
            safe_merge (`bool`, *optional*):
                If `True`, the merge operation will be performed in a copy of the original weights and check for NaNs
                before merging the weights. This is useful if you want to check if the merge operation will produce
                NaNs. Defaults to `False`.
            adapter_names (`List[str]`, *optional*):
                The list of adapter names that should be merged. If `None`, all active adapters will be merged.
                Defaults to `None`.
        """
        adapter_names = check_adapters_to_merge(self, adapter_names)
        if not adapter_names:
            # no adapter to merge
            return

        for active_adapter in adapter_names:
            if active_adapter in self._available_adapters:
                base_layer = self.get_base_layer()

                orig_weights = base_layer.weight.data
                if isinstance(base_layer, nn.Linear):
                    orig_weights = torch.transpose(orig_weights, 0, 1)
                elif isinstance(base_layer, nn.Conv2d):
                    orig_weights = orig_weights.view(
                        [
                            base_layer.out_channels,
                            base_layer.in_channels * base_layer.kernel_size[0] * base_layer.kernel_size[1],
                        ]
                    )
                    orig_weights = torch.transpose(orig_weights, 0, 1)
                delta_weight = self.get_delta_weight(active_adapter)
                if orig_weights.shape[1] != delta_weight.shape[1]:
                    # when in channels is not divisible by r
                    delta_weight = delta_weight[: orig_weights.shape[1], : orig_weights.shape[1]]
                new_weights = torch.mm(orig_weights, delta_weight)
                if isinstance(base_layer, nn.Linear):
                    new_weights = torch.transpose(new_weights, 0, 1)
                elif isinstance(base_layer, nn.Conv2d):
                    new_weights = torch.transpose(new_weights, 0, 1)
                    new_weights = new_weights.view(
                        [
                            base_layer.out_channels,
                            base_layer.in_channels,
                            base_layer.kernel_size[0],
                            base_layer.kernel_size[1],
                        ]
                    )

                if safe_merge and not torch.isfinite(new_weights).all():
                    raise ValueError(
                        f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
                    )

                base_layer.weight.data = new_weights
                self.merged_adapters.append(active_adapter)

    def unmerge(self) -> None:
        """
        This method unmerges all merged adapter layers from the base weights.
        """
        if not self.merged:
            warnings.warn("Already unmerged. Nothing to do.")
            return
        while len(self.merged_adapters) > 0:
            active_adapter = self.merged_adapters.pop()
            if active_adapter in self._available_adapters:
                base_layer = self.get_base_layer()
                new_weights = base_layer.weight.data
                if isinstance(base_layer, nn.Linear):
                    new_weights = torch.transpose(new_weights, 0, 1)
                elif isinstance(base_layer, nn.Conv2d):
                    new_weights = new_weights.view(
                        [
                            base_layer.out_channels,
                            base_layer.in_channels * base_layer.kernel_size[0] * base_layer.kernel_size[1],
                        ]
                    )
                    new_weights = torch.transpose(new_weights, 0, 1)
                delta_weight = self.get_delta_weight(active_adapter)
                if new_weights.shape[1] != delta_weight.shape[1]:
                    # when in channels is not divisible by r
                    delta_weight = delta_weight[: new_weights.shape[1], : new_weights.shape[1]]
                delta_inv = torch.inverse(delta_weight)
                orig_weights = torch.mm(new_weights, delta_inv)

                if isinstance(base_layer, nn.Linear):
                    orig_weights = torch.transpose(orig_weights, 0, 1)
                elif isinstance(base_layer, nn.Conv2d):
                    orig_weights = torch.transpose(orig_weights, 0, 1)
                    orig_weights = orig_weights.reshape(
                        [
                            base_layer.out_channels,
                            base_layer.in_channels,
                            base_layer.kernel_size[0],
                            base_layer.kernel_size[1],
                        ]
                    )
                base_layer.weight.data = orig_weights

    def get_delta_weight(self, adapter_name: str) -> torch.Tensor:
        rank = self.r[adapter_name]
        coft = self.coft[adapter_name]
        eps = self.eps[adapter_name]
        opt_r = self.oft_r[adapter_name]

        if coft:
            with torch.no_grad():
                opt_r.copy_(self._project_batch(opt_r, eps=eps))

        orth_rotate = self._cayley_batch(opt_r)
        weight = self._block_diagonal(orth_rotate, rank)

        return weight

    # Copied from https://github.com/Zeju1997/oft/blob/84cebb965df69781e3d9c3c875f5980b421eaf24/oft-control/oft.py#L144
    def _cayley_batch(self, data: torch.Tensor) -> torch.Tensor:
        b, r, c = data.shape
        # Ensure the input matrix is skew-symmetric
        skew = 0.5 * (data - data.transpose(1, 2))
        I = torch.eye(r, device=data.device).unsqueeze(0).expand(b, r, c)  # noqa: E741

        # Perform the Cayley parametrization
        Q = torch.bmm(I - skew, torch.inverse(I + skew))

        return Q

    # Copied from https://github.com/Zeju1997/oft/blob/84cebb965df69781e3d9c3c875f5980b421eaf24/oft-control/oft.py#L155
    def _block_diagonal(self, oft_r: torch.Tensor, rank: int) -> torch.Tensor:
        if oft_r.shape[0] == 1:
            # block share
            blocks = [oft_r[0, ...] for i in range(rank)]
        else:
            blocks = [oft_r[i, ...] for i in range(rank)]

        # Use torch.block_diag to create the block diagonal matrix
        A = torch.block_diag(*blocks)

        return A

    # Copied from https://github.com/Zeju1997/oft/blob/84cebb965df69781e3d9c3c875f5980b421eaf24/oft-control/oft.py#L52
    def _project_batch(self, oft_r, eps=1e-5):
        # scaling factor for each of the smaller block matrix
        eps = eps * 1 / torch.sqrt(torch.tensor(oft_r.shape[0]))
        I = (  # noqa: E741
            torch.zeros((oft_r.size(1), oft_r.size(1)), device=oft_r.device, dtype=oft_r.dtype)
            .unsqueeze(0)
            .expand_as(oft_r)
        )
        diff = oft_r - I
        norm_diff = torch.norm(oft_r - I, dim=(1, 2), keepdim=True)
        mask = (norm_diff <= eps).bool()
        out = torch.where(mask, oft_r, I + eps * (diff / norm_diff))
        return out

    def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
        previous_dtype = x.dtype

        if self.disable_adapters:
            if self.merged:
                self.unmerge()
            result = self.base_layer(x, *args, **kwargs)
        elif self.merged:
            result = self.base_layer(x, *args, **kwargs)
        else:
            result = self.base_layer(x, *args, **kwargs)
            if len(result.shape) == 4:
                result = result.permute(0, 2, 3, 1)

            base_layer = self.get_base_layer()
            base_bias = base_layer.bias
            if base_bias is not None:
                # Bias should be added after OFT forward
                result = result - base_bias.data

            # Execute all the adapters
            for active_adapter in self.active_adapters:
                if active_adapter not in self._available_adapters:
                    continue

                module_dropout = self.module_dropout[active_adapter]

                # Modify current execution weights
                if (not self.training) or (self.training and torch.rand(1) > module_dropout):
                    result = self._get_delta_activations(active_adapter, result, *args, **kwargs)

            if base_bias is not None:
                result = result + base_bias.data
            if len(result.shape) == 4:
                result = result.permute(0, 3, 1, 2)

        result = result.to(previous_dtype)
        return result


class Linear(OFTLayer):
    """OFT implemented in Linear layer"""

    def __init__(
        self,
        base_layer: nn.Module,
        adapter_name: str = "default",
        r: int = 0,
        module_dropout: float = 0.0,
        init_weights: bool = True,
        **kwargs,
    ):
        super().__init__(base_layer)

        # Create adapter and set it active
        self._active_adapter = adapter_name
        self.update_layer(adapter_name, r, module_dropout, init_weights, **kwargs)

    def _get_delta_activations(
        self, adapter_name: str, input: torch.Tensor, *args: Any, **kwargs: Any
    ) -> torch.Tensor:
        delta_weight = self.get_delta_weight(adapter_name)

        base_layer = self.get_base_layer()
        base_weight = base_layer.weight.data
        delta_weight = delta_weight[: base_weight.shape[0], : base_weight.shape[0]]

        # don't add bias here, because the bias will be added after OFT forward
        return torch.matmul(input, delta_weight)

    def __repr__(self) -> str:
        rep = super().__repr__()
        return "oft." + rep


class Conv2d(OFTLayer):
    """OFT implemented in Conv2d layer"""

    def __init__(
        self,
        base_layer: nn.Module,
        adapter_name: str = "default",
        r: int = 0,
        module_dropout: float = 0.0,
        init_weights: bool = True,
        **kwargs,
    ):
        super().__init__(base_layer)

        # Create adapter and set it active
        self._active_adapter = adapter_name
        self.update_layer(adapter_name, r, module_dropout, init_weights, **kwargs)

    def _get_delta_activations(
        self, adapter_name: str, input: torch.Tensor, *args: Any, **kwargs: Any
    ) -> torch.Tensor:
        delta_weight = self.get_delta_weight(adapter_name)

        base_layer = self.get_base_layer()
        base_weight = base_layer.weight.data
        delta_weight = delta_weight[: base_weight.shape[0], : base_weight.shape[0]]

        # don't add bias here, because the bias will be added after OFT forward
        return torch.matmul(input, delta_weight)

    def __repr__(self) -> str:
        rep = super().__repr__()
        return "oft." + rep