File size: 7,552 Bytes
d711508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations

import warnings
from typing import Optional

from torch import nn
from torch.nn.modules import Module
from tqdm import tqdm

from peft.config import PeftConfig
from peft.tuners.tuners_utils import BaseTuner, _get_submodules, check_target_module_exists
from peft.utils import TRANSFORMERS_MODELS_TO_LNTUNING_TARGET_MODULES_MAPPING, ModulesToSaveWrapper

from .layer import LNTuningLayer


class LNTuningModel(BaseTuner):
    """
    Creates LayerNorm tuning from a pretrained transformer model.

    The method is described in detail in https://arxiv.org/abs/2312.11420.

    Args:
        model ([`torch.nn.Module`]): The model to be adapted.
        config ([`LNTuningConfig`]): The configuration of the Lora model.
        adapter_name (`str`): The name of the adapter, defaults to `"default"`.

    Returns:
        'torch.nn.Module': The adapted model with LayerNorm tuned on.

    Example:

        ```py
        >>> from transformers import AutoModelForCausalLM
        >>> from peft import get_peft_model, TaskType, LNTuningConfig

        >>> peft_config = LNTuningConfig(
        ...     task_type=TaskType.CAUSAL_LM,
        ... )

        >>> model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
        >>> model = get_peft_model(model, peft_config)
        >>> model.print_trainable_parameters()
        ```

    **Attributes**:
        - **model** ([`~transformers.PreTrainedModel`]) -- The model to be adapted.
        - **peft_config** ([`LNTuningConfig`]): The configuration of the Lora model.
    """

    prefix: str = "ln_tuning_"

    def __init__(self, model, config, adapter_name) -> None:
        # self.adapter_name = adapter_name
        super().__init__(model, config, adapter_name)

    def __getattr__(self, name: str):
        """Forward missing attributes to the wrapped module."""
        try:
            return super().__getattr__(name)  # defer to nn.Module's logic
        except AttributeError:
            return getattr(self.model, name)

    # TODO: here need to handle the modules_to_save rather than the target_modules
    @staticmethod
    def _prepare_adapter_config(peft_config: PeftConfig, model_config: dict) -> PeftConfig:
        if peft_config.target_modules is None:
            if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_LNTUNING_TARGET_MODULES_MAPPING:
                raise ValueError("Please specify `target_modules` in `peft_config`")
            peft_config.target_modules = set(
                TRANSFORMERS_MODELS_TO_LNTUNING_TARGET_MODULES_MAPPING[model_config["model_type"]]
            )
        return peft_config

    def _create_and_replace(
        self,
        peft_config: PeftConfig,
        adapter_name: str,
        target: Module,
        target_name: str,
        parent: Module,
        current_key: str,
    ) -> None:
        # replace the original module with a same new module
        new_module = self._create_new_module(peft_config, target, adapter_name)
        if adapter_name != self.active_adapter:
            new_module.requires_grad_(False)
        self._replace_module(parent, target_name, new_module, target)

    def _create_new_module(
        self,
        peft_config: PeftConfig,
        target: Module,
        adapter_name: str,
    ) -> Module:
        if not isinstance(target, LNTuningLayer):
            new_module = LNTuningLayer(target, adapter_name)
        else:
            new_module = target
            new_module.update_layer(target.base_layer, adapter_name)
        return new_module

    def _replace_module(self, parent: Module, child_name: str, new_module: Module, child: Module) -> None:
        setattr(parent, child_name, new_module)

        if hasattr(child, "base_layer"):
            child = child.base_layer

        if getattr(child, "state", None) is not None:
            if hasattr(new_module, "base_layer"):
                new_module.base_layer.state = child.state
            else:
                new_module.state = child.state
            new_module.to(child.weight.device)

        for name, module in new_module.named_modules():
            weight = child.qweight if hasattr(child, "qweight") else child.weight
            module.to(weight.device)

    def _mark_only_adapters_as_trainable(self, model: Module):
        for n, p in model.named_parameters():
            if self.prefix not in n:
                p.requires_grad = False
            else:
                p.requires_grad = True

    def _check_target_module_exists(self, peft_config: PeftConfig, key: str) -> bool:
        return check_target_module_exists(peft_config, key)

    def _set_adapter_layers(self, enabled: bool) -> None:
        for module in self.model.modules():
            if isinstance(module, (LNTuningLayer, ModulesToSaveWrapper)):
                module.enable_adapters(enabled)

    def enable_adapter_layers(self) -> None:
        """Enable all adapters.

        Call this if you have previously disabled all adapters and want to re-enable them.
        """
        self._set_adapter_layers(enabled=True)

    def disable_adapter_layers(self) -> None:
        """Disable all adapters.

        When disabling all adapters, the model output corresponds to the output of the base model.
        """
        self._set_adapter_layers(enabled=False)

    def set_adapter(self, adapter_name: str) -> None:
        for module in self.model.modules():
            if isinstance(module, LNTuningLayer):
                if module.merged:
                    warnings.warn("Adapter cannot be set when the model is merged. Unmerging the model first.")
                    module.unmerge()
                module.set_adapter(adapter_name)
        self.active_adapter = adapter_name

    def _unload_and_optionally_merge(
        self,
        merge=True,
        progressbar: bool = False,
        safe_merge: bool = False,
        adapter_names: Optional[list[str]] = None,
    ):
        self._unloading_checks(adapter_names)
        key_list = [key for key, _ in self.model.named_modules() if self.prefix not in key]
        desc = "Unloading adapters " + ("and merging " if merge else "") + "model"

        for key in tqdm(key_list, disable=not progressbar, desc=desc):
            try:
                parent, target, target_name = _get_submodules(self.model, key)
            except AttributeError:
                continue

            if hasattr(target, "base_layer"):
                if merge:
                    target.merge(adapter_names)
                self._replace_module(parent, target_name, target.get_base_layer(), target)

        return self.model

    def unload(self):
        return self._unload_and_optionally_merge(merge=False)

    def merge_and_unload(
        self, progressbar: bool = False, safe_merge: bool = False, adapter_names: Optional[list[str]] = None
    ) -> nn.Module:
        return self._unload_and_optionally_merge(merge=True)