File size: 6,230 Bytes
184193d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from inspect import isfunction
from einops import rearrange, repeat
import xformers.ops as xops


def exists(val):
    return val is not None


def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d


class CrossAttention(nn.Module):
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

        self.heads = heads

        self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
        self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
        self.to_v = nn.Linear(context_dim, inner_dim, bias=False)

        self.to_out = nn.Sequential(
            nn.Linear(inner_dim, query_dim, bias=False),
            nn.Dropout(dropout)
        )

    def forward(self, x, context=None, mask=None):
        h = self.heads

        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
        v = self.to_v(context)

        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))

        out = xops.memory_efficient_attention(q, k, v)
        out = rearrange(out, '(b h) n d -> b n (h d)', h=h)

        return self.to_out(out)


class BasicTransformerBlock(nn.Module):
    def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True):
        super().__init__()

        self.self_attn = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout)

        self.ff = nn.Sequential(
            nn.Linear(dim, dim*4, bias=False),
            nn.GELU(),
            nn.Linear(dim*4, dim, bias=False),
        )

        self.norm1 = nn.LayerNorm(dim, bias=False)
        self.norm2 = nn.LayerNorm(dim, bias=False)

    def forward(self, x, context=None):
        before_sa = self.norm1(x)
        x = x + self.self_attn(before_sa)
        x = self.ff(self.norm2(x)) + x
        return x


class Transformer(nn.Module):
    def __init__(
        self, 
        image_size=512, 
        patch_size=8, 
        input_dim=3, 
        inner_dim=1024,
        output_dim=14,
        n_heads=16, 
        depth=24, 
        dropout=0.,
    ):
        super().__init__()

        self.patch_size = patch_size
        self.input_dim = input_dim
        self.inner_dim = inner_dim
        self.output_dim = output_dim

        self.patchify = nn.Conv2d(input_dim, inner_dim, kernel_size=patch_size, stride=patch_size, padding=0, bias=False)
        
        num_patches = (image_size // patch_size) ** 2
        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, inner_dim))
        self.ref_embed = nn.Parameter(torch.zeros(1, 1, inner_dim))
        self.src_embed = nn.Parameter(torch.zeros(1, 1, inner_dim))

        self.blocks = nn.ModuleList(
            [BasicTransformerBlock(inner_dim, n_heads, inner_dim//n_heads, dropout=dropout)
                for _ in range(depth)]
        )

        self.norm = nn.LayerNorm(inner_dim, bias=False)
        self.unpatchify = nn.Linear(inner_dim, patch_size ** 2 * output_dim, bias=True)

        nn.init.trunc_normal_(self.pos_embed, std=.02)
        nn.init.trunc_normal_(self.ref_embed, std=.02)
        nn.init.trunc_normal_(self.src_embed, std=.02)
        self.apply(self._init_weights)
    
    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            nn.init.trunc_normal_(m.weight, std=.02)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.weight, 1.0)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)
    
    def interpolate_pos_encoding(self, x, w, h):
        npatch = x.shape[-2]
        N = self.pos_embed.shape[-2]
        if npatch == N and w == h:
            return self.pos_embed
        patch_pos_embed = self.pos_embed
        dim = x.shape[-1]
        w0 = w // self.patch_size
        h0 = h // self.patch_size
        # we add a small number to avoid floating point error in the interpolation
        # see discussion at https://github.com/facebookresearch/dino/issues/8
        w0, h0 = w0 + 0.1, h0 + 0.1
        patch_pos_embed = F.interpolate(
            patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2).contiguous(),
            scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)),
            mode='bicubic',
        )
        assert int(w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1]
        patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim).contiguous()
        return patch_pos_embed

    def forward(self, images):
        """
        images: (B, N, C, H, W)
        """
        B, N, _, H, W = images.shape

        # patchify
        images = rearrange(images, 'b n c h w -> (b n) c h w')
        tokens = self.patchify(images)
        tokens = rearrange(tokens, 'bn c h w -> bn (h w) c')

        # add pos encodings
        tokens = rearrange(tokens, '(b n) hw c -> b n hw c', b=B)
        tokens = tokens + self.interpolate_pos_encoding(tokens, W, H).unsqueeze(1)
        view_embeds = torch.cat([self.ref_embed, self.src_embed.repeat(1, N-1, 1)], dim=1)
        tokens = tokens + view_embeds.unsqueeze(2)

        # tokens = rearrange(tokens, '(b n) hw c -> b n hw c', b=B)
        # tokens = tokens + self.interpolate_pos_encoding(tokens, W, H).unsqueeze(1)
        # view_embeds = self.src_embed.repeat(1, N, 1)
        # view_embeds[:, 0:1] = torch.zeros_like(self.ref_embed)
        # tokens = tokens + view_embeds.unsqueeze(2)

        # transformer
        tokens = rearrange(tokens, 'b n hw c -> b (n hw) c')
        x = tokens
        for layer in self.blocks:
            x = layer(x)
        
        # unpatchify
        x = self.norm(x)
        x = self.unpatchify(x)
        x = rearrange(x, 'b (n h w) c -> b n h w c', n=N, h=H//self.patch_size, w=W//self.patch_size)
        x = rearrange(x, 'b n h w (p q c) -> b n (h p) (w q) c', p=self.patch_size, q=self.patch_size)
        out = x

        return out