File size: 12,425 Bytes
f492855
 
 
726f7db
 
 
f492855
726f7db
47a5621
6e29804
726f7db
f492855
 
726f7db
f492855
726f7db
f492855
 
 
 
 
 
 
 
 
 
 
726f7db
f492855
 
 
6e29804
 
 
 
f492855
726f7db
f492855
 
 
 
 
 
 
 
 
 
 
 
 
 
726f7db
 
f492855
 
 
6e29804
 
 
 
f492855
6e29804
f492855
6e29804
 
 
 
 
 
 
 
 
 
f492855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e29804
 
 
 
f492855
 
 
 
726f7db
f492855
 
 
 
 
 
 
 
 
6e29804
f492855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e29804
f492855
6e29804
f492855
 
 
 
 
6e29804
f492855
 
6e29804
 
 
 
 
 
 
 
f492855
 
 
 
c8690a6
f492855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e29804
f492855
726f7db
f492855
 
 
 
 
6e29804
f492855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
726f7db
 
f492855
6e29804
 
f492855
 
 
 
6e29804
 
f492855
 
 
 
 
 
 
 
 
 
 
 
6e29804
 
f492855
6e29804
f492855
6e29804
f492855
 
 
 
 
 
 
 
 
 
 
 
 
6e29804
f492855
 
 
4bc8a6f
f492855
6e29804
f492855
 
 
 
 
 
71aa4e1
f492855
 
 
 
 
 
 
6e29804
 
f492855
726f7db
6e29804
f492855
6e29804
726f7db
 
f492855
726f7db
 
f492855
726f7db
 
 
 
f492855
726f7db
f492855
 
 
 
 
726f7db
f492855
726f7db
 
 
 
 
 
 
f492855
 
 
726f7db
f492855
726f7db
f492855
726f7db
 
 
 
 
 
 
f492855
726f7db
f492855
726f7db
f492855
726f7db
 
 
 
 
f492855
726f7db
f492855
726f7db
 
 
 
 
f492855
726f7db
f492855
726f7db
f492855
726f7db
f492855
 
 
726f7db
f492855
726f7db
f492855
726f7db
 
 
 
 
f492855
726f7db
f492855
 
 
 
 
 
 
 
726f7db
 
 
f492855
 
 
726f7db
 
11f32c8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
from dataclasses import dataclass
from typing import Union, Optional, List, Any, Dict

import gradio as gr
import numpy as np
import random
import spaces
import torch
from safetensors.torch import load_file as load_sft
from huggingface_hub import hf_hub_download

from diffusers import  DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL, FluxPipeline
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast

from model import Flux, FluxParams

def calculate_shift(
    image_seq_len,
    base_seq_len: int = 256,
    max_seq_len: int = 4096,
    base_shift: float = 0.5,
    max_shift: float = 1.16,
):
    m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
    b = base_shift - m * base_seq_len
    mu = image_seq_len * m + b
    return mu


def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional = None,
    device: Optional = None,
    timesteps: Optional = None,
    sigmas: Optional = None,
    **kwargs,
):
    if timesteps is not None and sigmas is not None:
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
    if timesteps is not None:
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps


@torch.inference_mode()
def flux_pipe_call_that_returns_an_iterable_of_images(
    self,
    prompt = None,
    prompt_2 = None,
    height = None,
    width = None,
    num_inference_steps: int = 28,
    timesteps = None,
    guidance_scale: float = 3.5,
    num_images_per_prompt = 1,
    generator = None,
    latents = None,
    prompt_embeds = None,
    pooled_prompt_embeds = None,
    output_type = "pil",
    return_dict = True,
    joint_attention_kwargs = None,
    max_sequence_length = 512,
    good_vae = None,
):
    height = height or self.default_sample_size * self.vae_scale_factor
    width = width or self.default_sample_size * self.vae_scale_factor

    # 1. Check inputs
    self.check_inputs(
        prompt,
        prompt_2,
        height,
        width,
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        max_sequence_length=max_sequence_length,
    )

    self._guidance_scale = guidance_scale
    self._joint_attention_kwargs = joint_attention_kwargs
    self._interrupt = False

    # 2. Define call parameters
    batch_size = 1 if isinstance(prompt, str) else len(prompt)
    try:
        device = self._execution_device
    except:
        device = torch.device('cuda:0')

    # 3. Encode prompt
    lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
    prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
        prompt=prompt,
        prompt_2=prompt_2,
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        device=device,
        num_images_per_prompt=num_images_per_prompt,
        max_sequence_length=max_sequence_length,
        lora_scale=lora_scale,
    )
    # 4. Prepare latent variables
    num_channels_latents = self.transformer.in_channels // 4
    latents, latent_image_ids = self.prepare_latents(
        batch_size * num_images_per_prompt,
        num_channels_latents,
        height,
        width,
        prompt_embeds.dtype,
        device,
        generator,
        latents,
    )
    # 5. Prepare timesteps
    sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
    image_seq_len = latents.shape[1]
    mu = calculate_shift(
        image_seq_len,
        self.scheduler.config.base_image_seq_len,
        self.scheduler.config.max_image_seq_len,
        self.scheduler.config.base_shift,
        self.scheduler.config.max_shift,
    )
    timesteps, num_inference_steps = retrieve_timesteps(
        self.scheduler,
        num_inference_steps,
        device,
        timesteps,
        sigmas,
        mu=mu,
    )
    self._num_timesteps = len(timesteps)

    # Handle guidance
    guidance = torch.full([1], guidance_scale, device=device, dtype=dtype).expand(latents.shape[0]) # if self.transformer.params.guidance_embeds else None

    # print(latent_image_ids.shape, text_ids.shape, pooled_prompt_embeds.shape)
    # 6. Denoising loop
    for i, t in enumerate(timesteps):
        if self.interrupt:
            continue

        timestep = t.expand(latents.shape[0]).to(dtype)

        noise_pred = self.transformer(
            img=latents.to(dtype).to(device),
            timesteps=(timestep / 1000).to(dtype),
            guidance=guidance.to(dtype).to(device),
            y=pooled_prompt_embeds.to(dtype).to(device),
            txt=prompt_embeds.to(dtype).to(device),
            txt_ids=text_ids.to(dtype).to(device),
            img_ids=latent_image_ids.to(dtype).to(device),
        )
        # Yield intermediate result
        latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
        latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
        image = self.vae.decode(latents_for_image, return_dict=False)[0]
        # yield self.image_processor.postprocess(image, output_type=output_type)[0]
        
        latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
        torch.cuda.empty_cache()

    # Final image using good_vae
    latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
    latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
    image = good_vae.decode(latents, return_dict=False)[0]
    self.maybe_free_model_hooks()
    torch.cuda.empty_cache()
    yield self.image_processor.postprocess(image, output_type=output_type)[0]


@dataclass
class ModelSpec:
    params: FluxParams
    repo_id: str 
    repo_flow: str 
    repo_ae: str 
    repo_id_ae: str
    ckpt_path: str


config = ModelSpec(
        repo_id="TencentARC/flux-mini",
        repo_flow="flux-mini.safetensors",
        repo_id_ae="black-forest-labs/FLUX.1-dev",
        repo_ae="ae.safetensors",
        ckpt_path=None, 
        params=FluxParams(
            in_channels=64,
            vec_in_dim=768,
            context_in_dim=4096,
            hidden_size=3072,
            mlp_ratio=4.0,
            num_heads=24,
            depth=5,
            depth_single_blocks=10,
            axes_dim=[16, 56, 56],
            theta=10_000,
            qkv_bias=True,
            guidance_embed=True,
        )
)


def load_flow_model2(config, device: str = "cuda", hf_download: bool = True):
    if (config.ckpt_path is None 
        and config.repo_id is not None
        and config.repo_flow is not None
        and hf_download
    ):
        ckpt_path = hf_hub_download(config.repo_id, config.repo_flow.replace("sft", "safetensors"))
    else:
        ckpt_path = config.ckpt_path

    model = Flux(config.params)
    if ckpt_path is not None:
        sd = load_sft(ckpt_path, device=str(device))
        missing, unexpected = model.load_state_dict(sd, strict=True)
    return model


dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="scheduler")
good_vae = vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
text_encoder = CLIPTextModel.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="text_encoder", torch_dtype=dtype).to(device)
tokenizer = CLIPTokenizer.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="tokenizer")
text_encoder_2 = T5EncoderModel.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="text_encoder_2", torch_dtype=dtype).to(device)
tokenizer_2 = T5TokenizerFast.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="tokenizer_2")
transformer = load_flow_model2(config, device).to(dtype).to(device)

pipe = FluxPipeline(
    scheduler,
    vae,
    text_encoder,
    tokenizer,
    text_encoder_2,
    tokenizer_2,
    transformer
)
torch.cuda.empty_cache()

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)

@spaces.GPU(duration=30)
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
    torch.cuda.empty_cache()
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    
    for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
            prompt=prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
            output_type="pil",
            good_vae=good_vae,
        ):
        pass
    return img, seed
    
examples = [
    "a lovely cat",
    "thousands of luminous oysters on a shore reflecting and refracting the sunset",
    "profile of sad Socrates, full body, high detail, dramatic scene, Epic dynamic action, wide angle, cinematic, hyper realistic, concept art, warm muted tones as painted by Bernie Wrightson, Frank Frazetta,"
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# FLUX-Mini
A 3.2B param rectified flow transformer distilled from [FLUX.1 [dev]](https://blackforestlabs.ai/)  
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] 
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():

                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=15,
                    step=0.1,
                    value=3.5,
                )
  
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )
        
        gr.Examples(
            examples = examples,
            fn = infer,
            inputs = [prompt],
            outputs = [result, seed],
            cache_examples="lazy"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn = infer,
        inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs = [result, seed]
    )

demo.launch()