File size: 2,496 Bytes
b6a9b6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import os
import torch
import numpy as np
import logging
from collections import OrderedDict
from PIL import Image

def requires_grad(model, flag=True):
    """
    Set requires_grad flag for all parameters in a model.
    """
    for p in model.parameters():
        p.requires_grad = flag

def create_logger(logging_dir):
    """
    Create a logger that writes to a log file and stdout.
    """
    logging.basicConfig(
        level=logging.INFO,
        format='[\033[34m%(asctime)s\033[0m] %(message)s',
        datefmt='%Y-%m-%d %H:%M:%S',
        handlers=[logging.StreamHandler(), logging.FileHandler(f"{logging_dir}/log.txt")]
    )
    logger = logging.getLogger(__name__)
    return logger

@torch.no_grad()
def update_ema(ema_model, model, decay=0.9999):
    """
    Step the EMA model towards the current model.
    """
    ema_params = OrderedDict(ema_model.named_parameters())
    model_params = OrderedDict(model.named_parameters())

    for name, param in model_params.items():
        name = name.replace("module.", "")
        # TODO: Consider applying only to params that require_grad to avoid small numerical changes of pos_embed
        ema_params[name].mul_(decay).add_(param.data, alpha=1 - decay)

def center_crop_arr(pil_image, image_size):
    """
    Center cropping implementation from ADM.
    https://github.com/openai/guided-diffusion/blob/8fb3ad9197f16bbc40620447b2742e13458d2831/guided_diffusion/image_datasets.py#L126
    """
    while min(*pil_image.size) >= 2 * image_size:
        pil_image = pil_image.resize(
            tuple(x // 2 for x in pil_image.size), resample=Image.BOX
        )

    scale = image_size / min(*pil_image.size)
    pil_image = pil_image.resize(
        tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
    )

    arr = np.array(pil_image)
    crop_y = (arr.shape[0] - image_size) // 2
    crop_x = (arr.shape[1] - image_size) // 2
    return Image.fromarray(arr[crop_y: crop_y + image_size, crop_x: crop_x + image_size])

def load_model(ckpt_name):
    """
    Finds a pre-trained DiT model, downloading it if necessary. Alternatively, loads a model from a local path.
    """
    # Load a custom DiT checkpoint:
    assert os.path.isfile(ckpt_name), f'Could not find DiT checkpoint at {ckpt_name}'
    checkpoint = torch.load(ckpt_name, map_location=lambda storage, loc: storage)
    if "ema" in checkpoint:  # supports checkpoints from train.py
        checkpoint = checkpoint["ema"]
    return checkpoint