File size: 11,829 Bytes
327be49
28b27d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
327be49
28b27d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
595554b
28b27d8
 
 
5b469a0
595554b
28b27d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b469a0
28b27d8
 
 
 
 
 
 
 
30bc91f
 
 
28b27d8
30bc91f
 
 
28b27d8
30bc91f
28b27d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8073d1
28b27d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8978714
669fdc5
28b27d8
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import spaces
import argparse
import os
import tempfile
from functools import partial
import cv2
import gradio as gr
import imageio
import numpy as np
import torch
import torchvision
from omegaconf import OmegaConf
from PIL import Image, ImageDraw
from pytorch_lightning import seed_everything
import sys
import copy 
from utils.gradio_utils import load_preprocess_model, preprocess_image
from ldm.util import instantiate_from_config, img2tensor
from customnet.ddim import DDIMSampler
from einops import rearrange
import math



#### Description ####
title = r"""<h1 align="center">CustomNet: Object Customization with Variable-Viewpoints in Text-to-Image Diffusion Models</h1>"""

description = r"""
<b>Official Gradio demo</b> for <a href='https://github.com/TencentARC/CustomNet' target='_blank'><b>CustomNet: Object Customization with Variable-Viewpoints in Text-to-Image Diffusion Models</b></a>.<br>
πŸ”₯ CustomNet is novel unified customization method that can generate harmonious customized images without
test-time optimization. CustomNet supports explicit viewpoint, location, text controls while ensuring
object identity preservation.<br>
πŸ€— Try to customize the object gneration yourself!<br>
"""
article = r"""
If CustomNet is helpful, please help to ⭐ the <a href='https://github.com/TencentARC/CustomNet' target='_blank'>Github Repo</a>. Thanks! 
[![GitHub Stars](https://img.shields.io/github/stars/TencentARC%2FCustomNet)](https://github.com/TencentARC/CustomNet)

---

πŸ“ **Citation**
<br>
If our work is useful for your research, please consider citing:
```bibtex
@misc{yuan2023customnet,
    title={CustomNet: Zero-shot Object Customization with Variable-Viewpoints in Text-to-Image Diffusion Models}, 
    author={Ziyang Yuan and Mingdeng Cao and Xintao Wang and Zhongang Qi and Chun Yuan and Ying Shan},
    year={2023},
    eprint={2310.19784},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
```

πŸ“§ **Contact**
<br>
If you have any questions, please feel free to reach me out at <b>yuanzy22@mails.tsinghua.edu.cn</b>.

"""

# input_img = None
# concat_img = None
# T = None
# prompt = None
negtive_prompt = ""


def send_input_to_concat(input_image):
    W, H = input_image.size
    # image_array[:, 0, :] = image_array[:, 0, :]
    draw = ImageDraw.Draw(input_image)
    draw.rectangle([(0,0),(H-1, W-1)], outline="red", width=8)
    return input_image

def preprocess_input(preprocess_model, input_image):
    # global input_img
    processed_image = preprocess_image(preprocess_model, input_image)
    # input_img = (processed_image / 255.0).astype(np.float32)
    return processed_image
    # return processed_image, processed_image

def adjust_location(x0, y0, x1, y1, input_image):
    x_0 = min(x0, x1)
    x_1 = max(x0, x1)
    y_0 = min(y0, y1)
    y_1 = max(y0, y1)
    print(x0, y0, x1, y1)
    print(x_0, y_0, x_1, y_1)
    new_size = (x_1-x_0, y_1-y_0)
    input_image = input_image.resize(new_size)
    img_array = np.array(input_image)
    white_background = np.zeros((256, 256, 3))
    white_background[y0:y1, x0:x1, :] = img_array
    img_array = white_background.astype(np.uint8)
    concat_img = Image.fromarray(img_array)
    draw = ImageDraw.Draw(concat_img)
    draw.rectangle([(x0,y0),(x1,y1)], outline="red", width=5)
    return x_0, y_0, x_1, y_1, concat_img

@spaces.GPU
def prepare_data(device, input_image, x0, y0, x1, y1, polar, azimuth, text):
    if input_image.size[0] != 256 or input_image.size[1] != 256:
        input_image = input_image.resize((256, 256))
    input_image = np.array(input_image)

    img_cond = img2tensor(input_image, bgr2rgb=False, float32=True).unsqueeze(0) / 255.
    img_cond = img_cond*2-1

    img_location = copy.deepcopy(img_cond)
    input_im_padding = torch.ones_like(img_location)

    x_0 = min(x0, x1)
    x_1 = max(x0, x1)
    y_0 = min(y0, y1)
    y_1 = max(y0, y1)
    print(x0, y0, x1, y1)
    print(x_0, y_0, x_1, y_1)
    img_location = torch.nn.functional.interpolate(img_location, (y_1-y_0, x_1-x_0), mode="bilinear")
    input_im_padding[:,:, y_0:y_1, x_0:x_1] = img_location
    img_location = input_im_padding

    T = torch.tensor([[math.radians(polar), math.sin(math.radians(azimuth)), math.cos(math.radians(azimuth)), 0.0]]).unsqueeze(1)
    batch = {
            "image_cond": img_cond.to(device),
            "image_location": img_location.to(device),
            'T': T.to(device),
            'text': [text],
            }
    return batch


@spaces.GPU(enable_queue=True, duration=180)
def run_generation(sampler, model, device, input_image, x0, y0, x1, y1, polar, azimuth, text, seed):
    seed_everything(seed)
    batch = prepare_data(device, input_image, x0, y0, x1, y1, polar, azimuth, text)
    model = model.to(device)
    sampler = DDIMSampler(model, device=device)

    c = model.get_learned_conditioning(batch["image_cond"])
    c = torch.cat([c, batch["T"]], dim=-1)
    c = model.cc_projection(c)
    
    ## condition
    cond = {}
    cond['c_concat'] = [model.encode_first_stage((batch["image_location"])).mode().detach()]
    cond['c_crossattn'] = [c]
    text_embedding = model.text_encoder(batch["text"])
    cond["c_crossattn"].append(text_embedding)

    ## null-condition
    uc = {}
    neg_prompt = ""

    uc['c_concat'] = [torch.zeros(1, 4, 32, 32).to(c.device)]
    uc['c_crossattn'] = [torch.zeros_like(c).to(c.device)]
    uc_text_embedding = model.text_encoder([neg_prompt])
    uc['c_crossattn'].append(uc_text_embedding)

    ## sample
    shape = [4, 32, 32]
    samples_latents, _ = sampler.sample(
            S=50, 
            batch_size=1,
            shape=shape,
            verbose=False,
            unconditional_guidance_scale=999,  # useless
            conditioning=cond,
            unconditional_conditioning=uc,
            cfg_type=0,
            cfg_scale_dict={"img": 0., "text":0., "all": 3.0 }
        )
        
    x_samples = model.decode_first_stage(samples_latents)

    x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0).cpu().numpy()
    x_samples = rearrange(255.0 *x_samples[0], 'c h w -> h w c').astype(np.uint8)
    
    output_image = Image.fromarray(x_samples)

    return output_image


def load_example(input_image, x0, y0, x1, y1, polar, azimuth, prompt):
    # print("AAAA")
    # print(type(x0))
    # print(type(polar))
    return input_image, x0, y0, x1, y1, polar, azimuth, prompt


@torch.no_grad()
def main(args):
    # load model
    device = torch.device("cuda")
    preprocess_model = load_preprocess_model()
    config = OmegaConf.load("configs/config_customnet.yaml") 
    model = instantiate_from_config(config.model)

    model_path='./customnet_v1.pt?download=true'
    if not os.path.exists(model_path):
        os.system(f'wget https://huggingface.co/TencentARC/CustomNet/resolve/main/customnet_v1.pt?download=true -P .')

    ckpt = torch.load(model_path, map_location="cpu")
    model.load_state_dict(ckpt)
    del ckpt
    model = model.to(device)
    sampler = None

    # load demo
    demo = gr.Blocks()
    with demo:
        gr.Markdown(title)
        gr.Markdown(description)

        with gr.Row():
            ## Left column
            with gr.Column():
                ## step 1. 
                gr.Markdown("## Step 1: Upload an object image and process", show_label=False)
                # with gr.Row(equal_height=True):
                input_image = gr.Image(type="pil", interactive=True, elem_id="input_image", elem_classes='image', visible=True)
                preprocess_botton = gr.Button(value="Need preprocess", visible=True)

                ## step 2. 
                gr.Markdown("## Step 2: Set up different controls ", show_label=False, visible=True)
                gr.Markdown("### 1: Object Location", show_label=False, visible=True)
                with gr.Row():    
                    with gr.Column():
                        with gr.Row():  
                            x0 = gr.Slider(minimum=0, maximum=256, step=1, label="X_0", value=0, interactive=True, visible=True)
                            y0 = gr.Slider(minimum=0, maximum=256, step=1, label="Y_0", value=0, interactive=True, visible=True)
                        with gr.Row():  
                            x1 = gr.Slider(minimum=0, maximum=256, step=1, label="X_1", value=256, interactive=True, visible=True)
                            y1 = gr.Slider(minimum=0, maximum=256, step=1, label="Y_1", value=256, interactive=True, visible=True)
                        location_botton = gr.Button(value="Update Location ", visible=True)

                    location_image = gr.Image(type="pil", interactive=True, elem_id="location", elem_classes='image', visible=True)
                gr.Markdown("### 2: Object Viewpoint", show_label=False, visible=True)
                with gr.Row():    
                    polar = gr.Slider(minimum=-30, maximum=30, step=-0.5, label="Polar Angle", value=0.0, visible=True)
                    azimuth = gr.Slider(minimum=-60, maximum=90, step=-0.5, label="Azimuth angle", value=0.0, visible=True)
                gr.Markdown("### 3: Text", show_label=False, visible=True)
                prompt = gr.Textbox(value="on the seaside", label="Prompt", interactive=True, visible=True)

                ## step 3. 
                gr.Markdown("## Step 3: Run Generation", show_label=False, visible=True)
                seed = gr.Number(value=1234, precision=0, interactive=True, label="Seed", visible=True)
                start = gr.Button(value="Run generation !", visible=True)



            examples_full = [
                ["examples/0.jpg", 50, 50, 256, 256, 0, -30, "a backpack in the office"],
                ["examples/1.jpg", 20, 20, 256, 256, -25, -35, "a pair of shoes on dirt road"],
                ["examples/2.jpg", 0, 0, 256, 256, -15, -20, "a car on the beach"],
                ["examples/3.jpg", 0, 0, 256, 256, 0, 30, "in the jungle"],
                ["examples/4.jpg", 0, 0, 256, 256, 0, -30, "in the snow"],
                ["examples/5.jpg", 20, 20, 240, 240, 10, 20, "with mountain behind"],
            ]

            ## Right column
            with gr.Column():
                gr.Markdown("## Generation Results", show_label=False, visible=True)
                output_image = gr.Image(type="pil", interactive=True, elem_id="output_image", elem_classes='image', visible=True)

                gr.Examples(
                    examples=examples_full,  # NOTE: elements must match inputs list!
                    fn=load_example,
                    inputs=[input_image, x0, y0, x1, y1, polar, azimuth, prompt],
                    outputs=[input_image, x0, y0, x1, y1, polar, azimuth, prompt],
                    cache_examples=False,
                    run_on_click=True,
                )
        gr.Markdown(article)

        ## function
        input_image.change(send_input_to_concat, inputs=input_image, outputs=location_image)
        preprocess_botton.click(partial(preprocess_input, preprocess_model), inputs=input_image, outputs=input_image)
        location_botton.click(adjust_location, 
                                inputs=[x0, y0, x1, y1, input_image], 
                                outputs=[x0, y0, x1, y1, location_image])

        start.click(partial(run_generation, sampler, model, device), 
                                inputs=[input_image, x0, y0, x1, y1, polar, azimuth, prompt, seed], 
                                outputs=output_image)
                                

    # demo.launch(server_name='0.0.0.0', share=False, server_port=args.port)
    # demo.queue(concurrency_count=1, max_size=10)
    demo.queue().launch()
    


if __name__=="__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--port", type=int, default=12345)
    args = parser.parse_args()

    main(args)