Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,906 Bytes
77771e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 |
import os
import random
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from PIL import Image
from torchvision import transforms
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
import matplotlib.pyplot as plt
import cv2
import torch.nn.functional as F
#torch.set_printoptions(precision=10)
class _bn_relu_conv(nn.Module):
def __init__(self, in_filters, nb_filters, fw, fh, subsample=1):
super(_bn_relu_conv, self).__init__()
self.model = nn.Sequential(
nn.BatchNorm2d(in_filters, eps=1e-3),
nn.LeakyReLU(0.2),
nn.Conv2d(in_filters, nb_filters, (fw, fh), stride=subsample, padding=(fw//2, fh//2), padding_mode='zeros')
)
def forward(self, x):
return self.model(x)
# the following are for debugs
print("****", np.max(x.cpu().numpy()), np.min(x.cpu().numpy()), np.mean(x.cpu().numpy()), np.std(x.cpu().numpy()), x.shape)
for i,layer in enumerate(self.model):
if i != 2:
x = layer(x)
else:
x = layer(x)
#x = nn.functional.pad(x, (1, 1, 1, 1), mode='constant', value=0)
print("____", np.max(x.cpu().numpy()), np.min(x.cpu().numpy()), np.mean(x.cpu().numpy()), np.std(x.cpu().numpy()), x.shape)
print(x[0])
return x
class _u_bn_relu_conv(nn.Module):
def __init__(self, in_filters, nb_filters, fw, fh, subsample=1):
super(_u_bn_relu_conv, self).__init__()
self.model = nn.Sequential(
nn.BatchNorm2d(in_filters, eps=1e-3),
nn.LeakyReLU(0.2),
nn.Conv2d(in_filters, nb_filters, (fw, fh), stride=subsample, padding=(fw//2, fh//2)),
nn.Upsample(scale_factor=2, mode='nearest')
)
def forward(self, x):
return self.model(x)
class _shortcut(nn.Module):
def __init__(self, in_filters, nb_filters, subsample=1):
super(_shortcut, self).__init__()
self.process = False
self.model = None
if in_filters != nb_filters or subsample != 1:
self.process = True
self.model = nn.Sequential(
nn.Conv2d(in_filters, nb_filters, (1, 1), stride=subsample)
)
def forward(self, x, y):
#print(x.size(), y.size(), self.process)
if self.process:
y0 = self.model(x)
#print("merge+", torch.max(y0+y), torch.min(y0+y),torch.mean(y0+y), torch.std(y0+y), y0.shape)
return y0 + y
else:
#print("merge", torch.max(x+y), torch.min(x+y),torch.mean(x+y), torch.std(x+y), y.shape)
return x + y
class _u_shortcut(nn.Module):
def __init__(self, in_filters, nb_filters, subsample):
super(_u_shortcut, self).__init__()
self.process = False
self.model = None
if in_filters != nb_filters:
self.process = True
self.model = nn.Sequential(
nn.Conv2d(in_filters, nb_filters, (1, 1), stride=subsample, padding_mode='zeros'),
nn.Upsample(scale_factor=2, mode='nearest')
)
def forward(self, x, y):
if self.process:
return self.model(x) + y
else:
return x + y
class basic_block(nn.Module):
def __init__(self, in_filters, nb_filters, init_subsample=1):
super(basic_block, self).__init__()
self.conv1 = _bn_relu_conv(in_filters, nb_filters, 3, 3, subsample=init_subsample)
self.residual = _bn_relu_conv(nb_filters, nb_filters, 3, 3)
self.shortcut = _shortcut(in_filters, nb_filters, subsample=init_subsample)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.residual(x1)
return self.shortcut(x, x2)
class _u_basic_block(nn.Module):
def __init__(self, in_filters, nb_filters, init_subsample=1):
super(_u_basic_block, self).__init__()
self.conv1 = _u_bn_relu_conv(in_filters, nb_filters, 3, 3, subsample=init_subsample)
self.residual = _bn_relu_conv(nb_filters, nb_filters, 3, 3)
self.shortcut = _u_shortcut(in_filters, nb_filters, subsample=init_subsample)
def forward(self, x):
y = self.residual(self.conv1(x))
return self.shortcut(x, y)
class _residual_block(nn.Module):
def __init__(self, in_filters, nb_filters, repetitions, is_first_layer=False):
super(_residual_block, self).__init__()
layers = []
for i in range(repetitions):
init_subsample = 1
if i == repetitions - 1 and not is_first_layer:
init_subsample = 2
if i == 0:
l = basic_block(in_filters=in_filters, nb_filters=nb_filters, init_subsample=init_subsample)
else:
l = basic_block(in_filters=nb_filters, nb_filters=nb_filters, init_subsample=init_subsample)
layers.append(l)
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
class _upsampling_residual_block(nn.Module):
def __init__(self, in_filters, nb_filters, repetitions):
super(_upsampling_residual_block, self).__init__()
layers = []
for i in range(repetitions):
l = None
if i == 0:
l = _u_basic_block(in_filters=in_filters, nb_filters=nb_filters)#(input)
else:
l = basic_block(in_filters=nb_filters, nb_filters=nb_filters)#(input)
layers.append(l)
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
class res_skip(nn.Module):
def __init__(self):
super(res_skip, self).__init__()
self.block0 = _residual_block(in_filters=1, nb_filters=24, repetitions=2, is_first_layer=True)#(input)
self.block1 = _residual_block(in_filters=24, nb_filters=48, repetitions=3)#(block0)
self.block2 = _residual_block(in_filters=48, nb_filters=96, repetitions=5)#(block1)
self.block3 = _residual_block(in_filters=96, nb_filters=192, repetitions=7)#(block2)
self.block4 = _residual_block(in_filters=192, nb_filters=384, repetitions=12)#(block3)
self.block5 = _upsampling_residual_block(in_filters=384, nb_filters=192, repetitions=7)#(block4)
self.res1 = _shortcut(in_filters=192, nb_filters=192)#(block3, block5, subsample=(1,1))
self.block6 = _upsampling_residual_block(in_filters=192, nb_filters=96, repetitions=5)#(res1)
self.res2 = _shortcut(in_filters=96, nb_filters=96)#(block2, block6, subsample=(1,1))
self.block7 = _upsampling_residual_block(in_filters=96, nb_filters=48, repetitions=3)#(res2)
self.res3 = _shortcut(in_filters=48, nb_filters=48)#(block1, block7, subsample=(1,1))
self.block8 = _upsampling_residual_block(in_filters=48, nb_filters=24, repetitions=2)#(res3)
self.res4 = _shortcut(in_filters=24, nb_filters=24)#(block0,block8, subsample=(1,1))
self.block9 = _residual_block(in_filters=24, nb_filters=16, repetitions=2, is_first_layer=True)#(res4)
self.conv15 = _bn_relu_conv(in_filters=16, nb_filters=1, fh=1, fw=1, subsample=1)#(block7)
def forward(self, x):
x0 = self.block0(x)
x1 = self.block1(x0)
x2 = self.block2(x1)
x3 = self.block3(x2)
x4 = self.block4(x3)
x5 = self.block5(x4)
res1 = self.res1(x3, x5)
x6 = self.block6(res1)
res2 = self.res2(x2, x6)
x7 = self.block7(res2)
res3 = self.res3(x1, x7)
x8 = self.block8(res3)
res4 = self.res4(x0, x8)
x9 = self.block9(res4)
y = self.conv15(x9)
return y
class MyDataset(Dataset):
def __init__(self, image_paths, transform=None):
self.image_paths = image_paths
self.transform = transform
def get_class_label(self, image_name):
# your method here
head, tail = os.path.split(image_name)
#print(tail)
return tail
def __getitem__(self, index):
image_path = self.image_paths[index]
x = Image.open(image_path)
y = self.get_class_label(image_path.split('/')[-1])
if self.transform is not None:
x = self.transform(x)
return x, y
def __len__(self):
return len(self.image_paths)
def loadImages(folder):
imgs = []
matches = []
# 获取当前目录下的所有文件和文件夹
for filename in os.listdir(folder):
# 拼接完整路径
file_path = os.path.join(folder, filename)
# 检查是否是文件
if os.path.isfile(file_path):
matches.append(file_path)
return matches
def crop_center_square(image):
"""
将图像中心裁剪为正方形
:param image: PIL.Image对象
:return: 裁剪后的PIL.Image对象
"""
# 获取图像的宽度和高度
width, height = image.size
# 确定正方形的边长
side_length = min(width, height)
# 计算裁剪区域的左上角坐标
left = (width - side_length) // 2
top = (height - side_length) // 2
right = left + side_length
bottom = top + side_length
# 执行裁剪
cropped_image = image.crop((left, top, right, bottom))
return cropped_image
def crop_image(image, crop_size, stride):
"""
根据给定的裁剪大小和步长裁剪图像,并返回裁剪后的图像列表。
:param image: PIL.Image对象
:param crop_size: 裁剪大小,例如 (384, 384)
:param stride: 重叠步长,例如 128
:return: 裁剪后的图像列表
"""
width, height = image.size
crop_width, crop_height = crop_size
cropped_images = []
for j in range(0, height - crop_height + 1, stride):
for i in range(0, width - crop_width + 1, stride):
crop_box = (i, j, i + crop_width, j + crop_height)
cropped_image = image.crop(crop_box)
cropped_images.append(cropped_image)
return cropped_images
def process_image_ref(image):
"""
处理输入的PIL图像,返回包含所有裁剪后图像的列表。
:param image: PIL.Image对象
:return: 包含所有裁剪后图像的列表
"""
# 调整图像到512*512
resized_image_512 = image.resize((512, 512))
# 创建一个列表,并将512*512的图像作为第一个元素
image_list = [resized_image_512]
# 按照384*384的大小,有重叠的2*2的crop图像
crop_size_384 = (384, 384)
stride_384 = 128
image_list.extend(crop_image(resized_image_512, crop_size_384, stride_384))
# 按照256*256的大小,有重叠的2*2的crop图像
# crop_size_256 = (256, 256)
# stride_256 = 256
# image_list.extend(crop_image(resized_image_512, crop_size_256, stride_256))
return image_list
def process_image_Q(image):
"""
处理输入的PIL图像,返回包含所有裁剪后图像的列表。
:param image: PIL.Image对象
:return: 包含所有裁剪后图像的列表
"""
# 调整图像到512*512
resized_image_512 = image.resize((512, 512)).convert("RGB").convert("RGB")
# 创建一个列表,并将512*512的图像作为第一个元素
image_list = []
# 按照384*384的大小,有重叠的2*2的crop图像
crop_size_384 = (384, 384)
stride_384 = 128
image_list.extend(crop_image(resized_image_512, crop_size_384, stride_384))
return image_list
def process_image(image, target_width=512, target_height = 512):
# 获取输入图像的宽高
img_width, img_height = image.size
img_ratio = img_width / img_height
# 计算目标宽高比
# target_width, target_height = target_ratio
target_ratio = target_width / target_height
# 计算宽高比误差
ratio_error = abs(img_ratio - target_ratio) / target_ratio
if ratio_error < 0.15:
# 如果误差小于15%,直接resize到目标宽高比
resized_image = image.resize((target_width, target_height), Image.BICUBIC)
else:
# 否则,随机裁剪到目标宽高比PIL.Image.BICUBIC
if img_ratio > target_ratio:
# 图像太宽,裁剪宽度
new_width = int(img_height * target_ratio)
# left = random.randint(0, img_width - new_width)
left = int((0 + img_width - new_width)/2)
top = 0
right = left + new_width
bottom = img_height
else:
# 图像太高,裁剪高度
new_height = int(img_width / target_ratio)
left = 0
# top = random.randint(0, img_height - new_height)
top = int((0 + img_height - new_height)/2)
right = img_width
bottom = top + new_height
cropped_image = image.crop((left, top, right, bottom))
resized_image = cropped_image.resize((target_width, target_height), Image.BICUBIC)
return resized_image.convert('RGB')
def crop_image_varres(image, crop_size, h_stride, w_stride):
"""
根据给定的裁剪大小和步长裁剪图像,并返回裁剪后的图像列表。
:param image: PIL.Image对象
:param crop_size: 裁剪大小,例如 (384, 384)
:param stride: 重叠步长,例如 128
:return: 裁剪后的图像列表
"""
width, height = image.size
crop_width, crop_height = crop_size
cropped_images = []
for j in range(0, height - crop_height + 1, h_stride):
for i in range(0, width - crop_width + 1, w_stride):
crop_box = (i, j, i + crop_width, j + crop_height)
cropped_image = image.crop(crop_box)
cropped_images.append(cropped_image)
return cropped_images
def process_image_ref_varres(image, target_width=512, target_height = 512):
"""
处理输入的PIL图像,返回包含所有裁剪后图像的列表。
:param image: PIL.Image对象
:return: 包含所有裁剪后图像的列表
"""
# 调整图像到512*512
resized_image_512 = image.resize((target_width, target_height))
# 创建一个列表,并将512*512的图像作为第一个元素
image_list = [resized_image_512]
# 按照384*384的大小,有重叠的2*2的crop图像
crop_size_384 = (target_width//4*3, target_height//4*3)
w_stride_384 = target_width//4
h_stride_384 = target_height//4
image_list.extend(crop_image_varres(resized_image_512, crop_size_384, h_stride = h_stride_384, w_stride = w_stride_384))
# 按照256*256的大小,有重叠的2*2的crop图像
# crop_size_256 = (256, 256)
# stride_256 = 256
# image_list.extend(self.crop_image(resized_image_512, crop_size_256, stride_256))
return image_list
def process_image_Q_varres(image, target_width=512, target_height = 512):
"""
处理输入的PIL图像,返回包含所有裁剪后图像的列表。
:param image: PIL.Image对象
:return: 包含所有裁剪后图像的列表
"""
# 调整图像到512*512
resized_image_512 = image.resize((target_width, target_height)).convert("RGB").convert("RGB")
# 创建一个列表,并将512*512的图像作为第一个元素
image_list = []
# 按照384*384的大小,有重叠的2*2的crop图像
crop_size_384 = (target_width//4*3, target_height//4*3)
w_stride_384 = target_width//4
h_stride_384 = target_height//4
image_list.extend(crop_image_varres(resized_image_512, crop_size_384, h_stride = h_stride_384, w_stride = w_stride_384))
return image_list
import torch
import torch.nn as nn
import torch.nn.functional as F
# 定义一个简单的 ResNet 块
class ResNetBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(ResNetBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x) # 直接相加
out = F.relu(out)
return out
# 定义两层 ResNet 块模型
class TwoLayerResNet(nn.Module):
def __init__(self, in_channels, out_channels):
super(TwoLayerResNet, self).__init__()
self.block1 = ResNetBlock(in_channels, out_channels)
self.block2 = ResNetBlock(out_channels, out_channels)
self.block3 = ResNetBlock(out_channels, out_channels)
self.block4 = ResNetBlock(out_channels, out_channels)
def forward(self, x):
x = self.block1(x)
x = self.block2(x)
x = self.block3(x)
x = self.block4(x)
return x
class MultiHiddenResNetModel(nn.Module):
def __init__(self, channels_list, num_tensors):
super(MultiHiddenResNetModel, self).__init__()
self.two_layer_resnets = nn.ModuleList([TwoLayerResNet(channels_list[idx]*2, channels_list[min(len(channels_list)-1,idx+2)]) for idx in range(num_tensors)])
def forward(self, tensor_list):
processed_list = []
for i, tensor in enumerate(tensor_list):
# 应用对应的两层 ResNet 块模型
tensor = self.two_layer_resnets[i](tensor)
processed_list.append(tensor)
return processed_list
def calculate_target_size(h, w):
# 计算目标高度和宽度,使得它们尽量保持原始比例,并且是 8 的倍数
if random.random()>0.5:
target_h = (h // 8) * 8
target_w = (w // 8) * 8
elif random.random()>0.5:
target_h = (h // 8) * 8
target_w = (w // 8) * 8
else:
target_h = (h // 8) * 8
target_w = (w // 8) * 8
# 如果目标高度或宽度为 0,则调整为 8
if target_h == 0:
target_h = 8
if target_w == 0:
target_w = 8
return target_h, target_w
def downsample_tensor(tensor):
# 获取 tensor 的高度和宽度
b, c, h, w = tensor.shape
# 计算目标高度和宽度
target_h, target_w = calculate_target_size(h, w)
# 使用插值方法将分辨率降为指定的目标高度和宽度
downsampled_tensor = F.interpolate(tensor, size=(target_h, target_w), mode='bilinear', align_corners=False)
return downsampled_tensor
def get_pixart_config():
pixart_config = {
"_class_name": "Transformer2DModel",
"_diffusers_version": "0.22.0.dev0",
"activation_fn": "gelu-approximate",
"attention_bias": True,
"attention_head_dim": 72,
"attention_type": "default",
"caption_channels": 4096,
"cross_attention_dim": 1152,
"double_self_attention": False,
"dropout": 0.0,
"in_channels": 4,
# "interpolation_scale": 2,
"norm_elementwise_affine": False,
"norm_eps": 1e-06,
"norm_num_groups": 32,
"norm_type": "ada_norm_single",
"num_attention_heads": 16,
"num_embeds_ada_norm": 1000,
"num_layers": 28,
"num_vector_embeds": None,
"only_cross_attention": False,
"out_channels": 8,
"patch_size": 2,
"sample_size": 128,
"upcast_attention": False,
# "use_additional_conditions": False,
"use_linear_projection": False
}
return pixart_config
class DoubleConv(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, 1, 1),
nn.BatchNorm2d(out_channels),
nn.ReLU(),
nn.Conv2d(out_channels, out_channels, 3, 1, 1),
nn.BatchNorm2d(out_channels),
nn.ReLU()
)
def forward(self, x):
return self.double_conv(x)
class UNet(nn.Module):
def __init__(self):
super().__init__()
# left
self.left_conv_1 = DoubleConv(6, 64)
self.down_1 = nn.MaxPool2d(2, 2)
self.left_conv_2 = DoubleConv(64, 128)
self.down_2 = nn.MaxPool2d(2, 2)
self.left_conv_3 = DoubleConv(128, 256)
self.down_3 = nn.MaxPool2d(2, 2)
self.left_conv_4 = DoubleConv(256, 512)
self.down_4 = nn.MaxPool2d(2, 2)
# center
self.center_conv = DoubleConv(512, 1024)
# right
self.up_1 = nn.ConvTranspose2d(1024, 512, 2, 2)
self.right_conv_1 = DoubleConv(1024, 512)
self.up_2 = nn.ConvTranspose2d(512, 256, 2, 2)
self.right_conv_2 = DoubleConv(512, 256)
self.up_3 = nn.ConvTranspose2d(256, 128, 2, 2)
self.right_conv_3 = DoubleConv(256, 128)
self.up_4 = nn.ConvTranspose2d(128, 64, 2, 2)
self.right_conv_4 = DoubleConv(128, 64)
# output
self.output = nn.Conv2d(64, 3, 1, 1, 0)
def forward(self, x):
# left
x1 = self.left_conv_1(x)
x1_down = self.down_1(x1)
x2 = self.left_conv_2(x1_down)
x2_down = self.down_2(x2)
x3 = self.left_conv_3(x2_down)
x3_down = self.down_3(x3)
x4 = self.left_conv_4(x3_down)
x4_down = self.down_4(x4)
# center
x5 = self.center_conv(x4_down)
# right
x6_up = self.up_1(x5)
temp = torch.cat((x6_up, x4), dim=1)
x6 = self.right_conv_1(temp)
x7_up = self.up_2(x6)
temp = torch.cat((x7_up, x3), dim=1)
x7 = self.right_conv_2(temp)
x8_up = self.up_3(x7)
temp = torch.cat((x8_up, x2), dim=1)
x8 = self.right_conv_3(temp)
x9_up = self.up_4(x8)
temp = torch.cat((x9_up, x1), dim=1)
x9 = self.right_conv_4(temp)
# output
output = self.output(x9)
return output
#
import sys
sys.path.append('./BidirectionalTranslation')
from data.base_dataset import BaseDataset, get_params, get_transform
from data.image_folder import make_dataset
def get_ScreenVAE_input(A_img, opt):
# 加载图像
# A_img = Image.open(image_path).convert('RGB')
# 加载线条图像(如果存在)
# if os.path.exists(image_path.replace('imgs','line')[:-4]+'.jpg'):
# L_img = cv2.imread(image_path.replace('imgs','line')[:-4]+'.jpg')
# kernel = np.ones((3,3), np.uint8)
# L_img = cv2.erode(L_img, kernel, iterations=1)
# L_img = Image.fromarray(L_img)
# else:
L_img = A_img
# 调整图像尺寸
if A_img.size != L_img.size:
A_img = A_img.resize(L_img.size, Image.ANTIALIAS)
if A_img.size[1] > 2500:
A_img = A_img.resize((A_img.size[0]//2, A_img.size[1]//2), Image.ANTIALIAS)
# 获取变换参数
ow, oh = A_img.size
transform_params = get_params(opt, A_img.size)
# 应用变换
A_transform = get_transform(opt, transform_params, grayscale=False)
L_transform = get_transform(opt, transform_params, grayscale=True)
A = A_transform(A_img)
L = L_transform(L_img)
# 生成灰度图像
tmp = A[0, ...] * 0.299 + A[1, ...] * 0.587 + A[2, ...] * 0.114
Ai = tmp.unsqueeze(0)
return {'A': A.unsqueeze(0), 'Ai': Ai.unsqueeze(0), 'L': L.unsqueeze(0), 'A_paths': '', 'h': oh, 'w': ow, 'B': torch.zeros(1),
'Bs': torch.zeros(1),
'Bi': torch.zeros(1),
'Bl': torch.zeros(1),}
def get_bidirectional_translation_opt(opt):
opt.results_dir = './results/test/western2manga'
opt.dataroot = './datasets/color2manga'
opt.checkpoints_dir = '/group/40034/zhuangjunhao/ScreenStyle/BidirectionalTranslation/checkpoints/color2manga/'
opt.name = 'color2manga_cycle_ganstft'
opt.model = 'cycle_ganstft'
opt.direction = 'BtoA'
opt.preprocess = 'none'
opt.load_size = 512
opt.crop_size = 1024
opt.input_nc = 1
opt.output_nc = 3
opt.nz = 64
opt.netE = 'conv_256'
opt.num_test = 30
opt.n_samples = 1
opt.upsample = 'bilinear'
opt.ngf = 48
opt.nef = 48
opt.ndf = 32
opt.center_crop = True
opt.color2screen = True
opt.no_flip = True
# Set other options
opt.num_threads = 1
opt.batch_size = 1
opt.serial_batches = True
return opt |