File size: 223,671 Bytes
77771e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
# Community Pipeline Examples

> **For more information about community pipelines, please have a look at [this issue](https://github.com/huggingface/diffusers/issues/841).**

**Community pipeline** examples consist pipelines that have been added by the community.
Please have a look at the following tables to get an overview of all community examples. Click on the **Code Example** to get a copy-and-paste ready code example that you can try out.
If a community pipeline doesn't work as expected, please open an issue and ping the author on it.

Please also check out our [Community Scripts](https://github.com/huggingface/diffusers/blob/main/examples/community/README_community_scripts.md) examples for tips and tricks that you can use with diffusers without having to run a community pipeline.

| Example                                                                                                                               | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Code Example                                                                              | Colab                                                                                                                                                                                                              |                                                        Author |
|:--------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------:|
|Flux with CFG|[Flux with CFG](https://github.com/ToTheBeginning/PuLID/blob/main/docs/pulid_for_flux.md) provides an implementation of using CFG in [Flux](https://blackforestlabs.ai/announcing-black-forest-labs/).|[Flux with CFG](#flux-with-cfg)|NA|[Linoy Tsaban](https://github.com/linoytsaban), [Apolinário](https://github.com/apolinario), and [Sayak Paul](https://github.com/sayakpaul)|
|Differential Diffusion|[Differential Diffusion](https://github.com/exx8/differential-diffusion) modifies an image according to a text prompt, and according to a map that specifies the amount of change in each region.|[Differential Diffusion](#differential-diffusion)|[![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/exx8/differential-diffusion) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/exx8/differential-diffusion/blob/main/examples/SD2.ipynb)|[Eran Levin](https://github.com/exx8) and [Ohad Fried](https://www.ohadf.com/)|
| HD-Painter                                                                                                                            | [HD-Painter](https://github.com/Picsart-AI-Research/HD-Painter) enables prompt-faithfull and high resolution (up to 2k) image inpainting upon any diffusion-based image inpainting method.                                                                                                                                                                                                                                                                                                               | [HD-Painter](#hd-painter)                                                                 | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/PAIR/HD-Painter)                                                                              | [Manukyan Hayk](https://github.com/haikmanukyan) and [Sargsyan Andranik](https://github.com/AndranikSargsyan) |
| Marigold Monocular Depth Estimation                                                                                                   | A universal monocular depth estimator, utilizing Stable Diffusion, delivering sharp predictions in the wild. (See the [project page](https://marigoldmonodepth.github.io) and [full codebase](https://github.com/prs-eth/marigold) for more details.)                                                                                                                                                                                                                                                        | [Marigold Depth Estimation](#marigold-depth-estimation)                                   | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/toshas/marigold) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/12G8reD13DdpMie5ZQlaFNo2WCGeNUH-u?usp=sharing) | [Bingxin Ke](https://github.com/markkua) and [Anton Obukhov](https://github.com/toshas) |
| LLM-grounded Diffusion (LMD+)                                                                                                         | LMD greatly improves the prompt following ability of text-to-image generation models by introducing an LLM as a front-end prompt parser and layout planner. [Project page.](https://llm-grounded-diffusion.github.io/) [See our full codebase (also with diffusers).](https://github.com/TonyLianLong/LLM-groundedDiffusion)                                                                                                                                                                                                                                                                                                                                                                                                                                   | [LLM-grounded Diffusion (LMD+)](#llm-grounded-diffusion)                             | [Huggingface Demo](https://huggingface.co/spaces/longlian/llm-grounded-diffusion) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1SXzMSeAB-LJYISb2yrUOdypLz4OYWUKj) |                [Long (Tony) Lian](https://tonylian.com/) |
| CLIP Guided Stable Diffusion                                                                                                          | Doing CLIP guidance for text to image generation with Stable Diffusion                                                                                                                                                                                                                                                                                                                                                                                                                                   | [CLIP Guided Stable Diffusion](#clip-guided-stable-diffusion)                             | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/CLIP_Guided_Stable_diffusion_with_diffusers.ipynb) |                [Suraj Patil](https://github.com/patil-suraj/) |
| One Step U-Net (Dummy)                                                                                                                | Example showcasing of how to use Community Pipelines (see <https://github.com/huggingface/diffusers/issues/841>)                                                                                                                                                                                                                                                                                                                                                                                           | [One Step U-Net](#one-step-unet)                                                          | -                                                                                                                                                                                                                  |    [Patrick von Platen](https://github.com/patrickvonplaten/) |
| Stable Diffusion Interpolation                                                                                                        | Interpolate the latent space of Stable Diffusion between different prompts/seeds                                                                                                                                                                                                                                                                                                                                                                                                                         | [Stable Diffusion Interpolation](#stable-diffusion-interpolation)                         | -                                                                                                                                                                                                                  |                       [Nate Raw](https://github.com/nateraw/) |
| Stable Diffusion Mega                                                                                                                 | **One** Stable Diffusion Pipeline with all functionalities of [Text2Image](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py), [Image2Image](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py) and [Inpainting](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py) | [Stable Diffusion Mega](#stable-diffusion-mega)                                           | -                                                                                                                                                                                                                  |    [Patrick von Platen](https://github.com/patrickvonplaten/) |
| Long Prompt Weighting Stable Diffusion                                                                                                | **One** Stable Diffusion Pipeline without tokens length limit, and support parsing weighting in prompt.                                                                                                                                                                                                                                                                                                                                                                                                  | [Long Prompt Weighting Stable Diffusion](#long-prompt-weighting-stable-diffusion)         | -                                                                                                                                                                                                                  |                           [SkyTNT](https://github.com/SkyTNT) |
| Speech to Image                                                                                                                       | Using automatic-speech-recognition to transcribe text and Stable Diffusion to generate images                                                                                                                                                                                                                                                                                                                                                                                                            | [Speech to Image](#speech-to-image)                                                       | -                                                                                                                                                                                                                  |             [Mikail Duzenli](https://github.com/MikailINTech)
| Wild Card Stable Diffusion                                                                                                            | Stable Diffusion Pipeline that supports prompts that contain wildcard terms (indicated by surrounding double underscores), with values instantiated randomly from a corresponding txt file or a dictionary of possible values                                                                                                                                                                                                                                                                            | [Wildcard Stable Diffusion](#wildcard-stable-diffusion)                                   | -                                                                                                                                                                                                                  |              [Shyam Sudhakaran](https://github.com/shyamsn97) |
| [Composable Stable Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/) | Stable Diffusion Pipeline that supports prompts that contain "&#124;" in prompts (as an AND condition) and weights (separated by "&#124;" as well) to positively / negatively weight prompts.                                                                                                                                                                                                                                                                                                            | [Composable Stable Diffusion](#composable-stable-diffusion)                               | -                                                                                                                                                                                                                  |                      [Mark Rich](https://github.com/MarkRich) |
| Seed Resizing Stable Diffusion                                                                                                        | Stable Diffusion Pipeline that supports resizing an image and retaining the concepts of the 512 by 512 generation.                                                                                                                                                                                                                                                                                                                                                                                       | [Seed Resizing](#seed-resizing)                                                           | -                                                                                                                                                                                                                  |                      [Mark Rich](https://github.com/MarkRich) |
| Imagic Stable Diffusion                                                                                                               | Stable Diffusion Pipeline that enables writing a text prompt to edit an existing image                                                                                                                                                                                                                                                                                                                                                                                                                   | [Imagic Stable Diffusion](#imagic-stable-diffusion)                                       | -                                                                                                                                                                                                                  |                      [Mark Rich](https://github.com/MarkRich) |
| Multilingual Stable Diffusion                                                                                                         | Stable Diffusion Pipeline that supports prompts in 50 different languages.                                                                                                                                                                                                                                                                                                                                                                                                                               | [Multilingual Stable Diffusion](#multilingual-stable-diffusion-pipeline)                  | -                                                                                                                                                                                                                  |          [Juan Carlos Piñeros](https://github.com/juancopi81) |
| GlueGen Stable Diffusion                                                                                                         | Stable Diffusion Pipeline that supports prompts in different languages using GlueGen adapter.                                                                                                                                                                                                                                                                                                                                                                                                                               | [GlueGen Stable Diffusion](#gluegen-stable-diffusion-pipeline)                  | -                                                                                                                                                                                                                  |          [Phạm Hồng Vinh](https://github.com/rootonchair) |
| Image to Image Inpainting Stable Diffusion                                                                                            | Stable Diffusion Pipeline that enables the overlaying of two images and subsequent inpainting                                                                                                                                                                                                                                                                                                                                                                                                            | [Image to Image Inpainting Stable Diffusion](#image-to-image-inpainting-stable-diffusion) | -                                                                                                                                                                                                                  |                    [Alex McKinney](https://github.com/vvvm23) |
| Text Based Inpainting Stable Diffusion                                                                                                | Stable Diffusion Inpainting Pipeline that enables passing a text prompt to generate the mask for inpainting                                                                                                                                                                                                                                                                                                                                                                                              | [Text Based Inpainting Stable Diffusion](#text-based-inpainting-stable-diffusion)     | -                                                                                                                                                                                                                  |                   [Dhruv Karan](https://github.com/unography) |
| Bit Diffusion                                                                                                                         | Diffusion on discrete data                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [Bit Diffusion](#bit-diffusion)                                                           | -  |                       [Stuti R.](https://github.com/kingstut) |
| K-Diffusion Stable Diffusion                                                                                                          | Run Stable Diffusion with any of [K-Diffusion's samplers](https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py)                                                                                                                                                                                                                                                                                                                                                                  | [Stable Diffusion with K Diffusion](#stable-diffusion-with-k-diffusion)                   | -  |    [Patrick von Platen](https://github.com/patrickvonplaten/) |
| Checkpoint Merger Pipeline                                                                                                            | Diffusion Pipeline that enables merging of saved model checkpoints                                                                                                                                                                                                                                                                                                                                                                                                                                       | [Checkpoint Merger Pipeline](#checkpoint-merger-pipeline)                                 | -                                                                                                                                                                                                                  | [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
| Stable Diffusion v1.1-1.4 Comparison                                                                                                  | Run all 4 model checkpoints for Stable Diffusion and compare their results together                                                                                                                                                                                                                                                                                                                                                                                                                      | [Stable Diffusion Comparison](#stable-diffusion-comparisons)                              | - |        [Suvaditya Mukherjee](https://github.com/suvadityamuk) |
| MagicMix                                                                                                                              | Diffusion Pipeline for semantic mixing of an image and a text prompt                                                                                                                                                                                                                                                                                                                                                                                                                                     | [MagicMix](#magic-mix)                                                                    | - |                    [Partho Das](https://github.com/daspartho) |
| Stable UnCLIP                                                                                                                         | Diffusion Pipeline for combining prior model (generate clip image embedding from text, UnCLIPPipeline `"kakaobrain/karlo-v1-alpha"`) and decoder pipeline (decode clip image embedding to image, StableDiffusionImageVariationPipeline `"lambdalabs/sd-image-variations-diffusers"` ).                                                                                                                                                                                                                   | [Stable UnCLIP](#stable-unclip)                                                           | -  |                                [Ray Wang](https://wrong.wang) |
| UnCLIP Text Interpolation Pipeline                                                                                                    | Diffusion Pipeline that allows passing two prompts and produces images while interpolating between the text-embeddings of the two prompts                                                                                                                                                                                                                                                                                                                                                                | [UnCLIP Text Interpolation Pipeline](#unclip-text-interpolation-pipeline)                 | -                                                                                                                                                                                                                  | [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
| UnCLIP Image Interpolation Pipeline                                                                                                   | Diffusion Pipeline that allows passing two images/image_embeddings and produces images while interpolating between their image-embeddings                                                                                                                                                                                                                                                                                                                                                                | [UnCLIP Image Interpolation Pipeline](#unclip-image-interpolation-pipeline)               | -                                                                                                                                                                                                                  | [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
| DDIM Noise Comparative Analysis Pipeline                                                                                              | Investigating how the diffusion models learn visual concepts from each noise level (which is a contribution of [P2 weighting (CVPR 2022)](https://arxiv.org/abs/2204.00227))                                                                                                                                                                                                                                                                                                                             | [DDIM Noise Comparative Analysis Pipeline](#ddim-noise-comparative-analysis-pipeline)     | - |              [Aengus (Duc-Anh)](https://github.com/aengusng8) |
| CLIP Guided Img2Img Stable Diffusion Pipeline                                                                                         | Doing CLIP guidance for image to image generation with Stable Diffusion                                                                                                                                                                                                                                                                                                                                                                                                                                  | [CLIP Guided Img2Img Stable Diffusion](#clip-guided-img2img-stable-diffusion)             | - |               [Nipun Jindal](https://github.com/nipunjindal/) |
| TensorRT Stable Diffusion Text to Image Pipeline                                                                                                    | Accelerates the Stable Diffusion Text2Image Pipeline using TensorRT                                                                                                                                                                                                                                                                                                                                                                                                                                      | [TensorRT Stable Diffusion Text to Image Pipeline](#tensorrt-text2image-stable-diffusion-pipeline)      | - |              [Asfiya Baig](https://github.com/asfiyab-nvidia) |
| EDICT Image Editing Pipeline                                                                                                          | Diffusion pipeline for text-guided image editing                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [EDICT Image Editing Pipeline](#edict-image-editing-pipeline)                             | - |                    [Joqsan Azocar](https://github.com/Joqsan) |
| Stable Diffusion RePaint                                                                                                              | Stable Diffusion pipeline using [RePaint](https://arxiv.org/abs/2201.09865) for inpainting.                                                                                                                                                                                                                                                                                                                                                                                                               | [Stable Diffusion RePaint](#stable-diffusion-repaint )                                    | - |                  [Markus Pobitzer](https://github.com/Markus-Pobitzer) |
| TensorRT Stable Diffusion Image to Image Pipeline                                                                                                    | Accelerates the Stable Diffusion Image2Image Pipeline using TensorRT                                                                                                                                                                                                                                                                                                                                                                                                                                      | [TensorRT Stable Diffusion Image to Image Pipeline](#tensorrt-image2image-stable-diffusion-pipeline)      | - |              [Asfiya Baig](https://github.com/asfiyab-nvidia) |
| Stable Diffusion IPEX Pipeline | Accelerate Stable Diffusion inference pipeline with BF16/FP32 precision on Intel Xeon CPUs with [IPEX](https://github.com/intel/intel-extension-for-pytorch) | [Stable Diffusion on IPEX](#stable-diffusion-on-ipex) | - | [Yingjie Han](https://github.com/yingjie-han/) |
| CLIP Guided Images Mixing Stable Diffusion Pipeline | Сombine images using usual diffusion models. | [CLIP Guided Images Mixing Using Stable Diffusion](#clip-guided-images-mixing-with-stable-diffusion) | - | [Karachev Denis](https://github.com/TheDenk) |
| TensorRT Stable Diffusion Inpainting Pipeline                                                                                                    | Accelerates the Stable Diffusion Inpainting Pipeline using TensorRT                                                                                                                                                                                                                                                                                                                                                                                                                                      | [TensorRT Stable Diffusion Inpainting Pipeline](#tensorrt-inpainting-stable-diffusion-pipeline)      | - |              [Asfiya Baig](https://github.com/asfiyab-nvidia) |
|   IADB Pipeline                                                                                                    | Implementation of [Iterative α-(de)Blending: a Minimalist Deterministic Diffusion Model](https://arxiv.org/abs/2305.03486)                                                                                                                                                                                                                                                                                                                                                                                                                                      | [IADB Pipeline](#iadb-pipeline)      | - |              [Thomas Chambon](https://github.com/tchambon)
|   Zero1to3 Pipeline                                                                                                    | Implementation of [Zero-1-to-3: Zero-shot One Image to 3D Object](https://arxiv.org/abs/2303.11328)                                                                                                                                                                                                                                                                                                                                                                                                                                      | [Zero1to3 Pipeline](#zero1to3-pipeline)      | - |              [Xin Kong](https://github.com/kxhit) |
| Stable Diffusion XL Long Weighted Prompt Pipeline | A pipeline support unlimited length of prompt and negative prompt, use A1111 style of prompt weighting | [Stable Diffusion XL Long Weighted Prompt Pipeline](#stable-diffusion-xl-long-weighted-prompt-pipeline) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1LsqilswLR40XLLcp6XFOl5nKb_wOe26W?usp=sharing) | [Andrew Zhu](https://xhinker.medium.com/) |
| FABRIC - Stable Diffusion with feedback Pipeline | pipeline supports feedback from liked and disliked images | [Stable Diffusion Fabric Pipeline](#stable-diffusion-fabric-pipeline) | - | [Shauray Singh](https://shauray8.github.io/about_shauray/) |
| sketch inpaint - Inpainting with non-inpaint Stable Diffusion | sketch inpaint much like in automatic1111 | [Masked Im2Im Stable Diffusion Pipeline](#stable-diffusion-masked-im2im) | - | [Anatoly Belikov](https://github.com/noskill) |
| sketch inpaint xl - Inpainting with non-inpaint Stable Diffusion | sketch inpaint much like in automatic1111 | [Masked Im2Im Stable Diffusion XL Pipeline](#stable-diffusion-xl-masked-im2im) | - | [Anatoly Belikov](https://github.com/noskill) |
| prompt-to-prompt | change parts of a prompt and retain image structure (see [paper page](https://prompt-to-prompt.github.io/)) | [Prompt2Prompt Pipeline](#prompt2prompt-pipeline) | - | [Umer H. Adil](https://twitter.com/UmerHAdil) |
|   Latent Consistency Pipeline                                                                                                    | Implementation of [Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference](https://arxiv.org/abs/2310.04378)                                                                                                                                                                                                                                                                                                                                                                                                                                      | [Latent Consistency Pipeline](#latent-consistency-pipeline)      | - |              [Simian Luo](https://github.com/luosiallen) |
|   Latent Consistency Img2img Pipeline                                                                                                    | Img2img pipeline for Latent Consistency Models                                                                                                                                                                                                                                                                                                                                                                                                                                    | [Latent Consistency Img2Img Pipeline](#latent-consistency-img2img-pipeline)      | - |              [Logan Zoellner](https://github.com/nagolinc) |
|   Latent Consistency Interpolation Pipeline                                                                                                    | Interpolate the latent space of Latent Consistency Models with multiple prompts                                                                                                                                                                                                                                                                                                                                                                                                                                    | [Latent Consistency Interpolation Pipeline](#latent-consistency-interpolation-pipeline) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1pK3NrLWJSiJsBynLns1K1-IDTW9zbPvl?usp=sharing) | [Aryan V S](https://github.com/a-r-r-o-w) |
| SDE Drag Pipeline                                                                                                                         | The pipeline supports drag editing of images using stochastic differential equations                                                                                                                                                                                                                                                                                                                                                                                                                | [SDE Drag Pipeline](#sde-drag-pipeline)                                                     | - | [NieShen](https://github.com/NieShenRuc) [Fengqi Zhu](https://github.com/Monohydroxides) |
|   Regional Prompting Pipeline                                                                                               | Assign multiple prompts for different regions                                                                                                                                                                                                                                                                                                                                                    |  [Regional Prompting Pipeline](#regional-prompting-pipeline) | - | [hako-mikan](https://github.com/hako-mikan) |
| LDM3D-sr (LDM3D upscaler)                                                                                                             | Upscale low resolution RGB and depth inputs to high resolution                                                                                                                                                                                                                                                                                                                                                                                                                              | [StableDiffusionUpscaleLDM3D Pipeline](https://github.com/estelleafl/diffusers/tree/ldm3d_upscaler_community/examples/community#stablediffusionupscaleldm3d-pipeline)                                                                             | -                                                                                                                                                                                                             |                                                        [Estelle Aflalo](https://github.com/estelleafl) |
| AnimateDiff ControlNet Pipeline                                                                                                    | Combines AnimateDiff with precise motion control using ControlNets                                                                                                                                                                                                                                                                                                                                                                                                                                    | [AnimateDiff ControlNet Pipeline](#animatediff-controlnet-pipeline) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1SKboYeGjEQmQPWoFC0aLYpBlYdHXkvAu?usp=sharing) | [Aryan V S](https://github.com/a-r-r-o-w) and [Edoardo Botta](https://github.com/EdoardoBotta) |
|   DemoFusion Pipeline                                                                                                    | Implementation of [DemoFusion: Democratising High-Resolution Image Generation With No $$$](https://arxiv.org/abs/2311.16973)                                                                                                                                                                                                                                                                                                                                                                                                                                      | [DemoFusion Pipeline](#demofusion)      | - |              [Ruoyi Du](https://github.com/RuoyiDu) |
|   Instaflow Pipeline                                                                                                    | Implementation of [InstaFlow! One-Step Stable Diffusion with Rectified Flow](https://arxiv.org/abs/2309.06380)                                                                                                                                                                                                                                                                                                                                                                                                                                      | [Instaflow Pipeline](#instaflow-pipeline)      | - |              [Ayush Mangal](https://github.com/ayushtues) |
|   Null-Text Inversion Pipeline  | Implement [Null-text Inversion for Editing Real Images using Guided Diffusion Models](https://arxiv.org/abs/2211.09794) as a pipeline.                                                                                                                                                                                                                                                                                                                                                                                                                                      | [Null-Text Inversion](https://github.com/google/prompt-to-prompt/)      | - |              [Junsheng Luan](https://github.com/Junsheng121) |
|   Rerender A Video Pipeline                                                                                                    | Implementation of [[SIGGRAPH Asia 2023] Rerender A Video: Zero-Shot Text-Guided Video-to-Video Translation](https://arxiv.org/abs/2306.07954)                                                                                                                                                                                                                                                                                                                                                                                                                                      | [Rerender A Video Pipeline](#rerender-a-video)      | - |              [Yifan Zhou](https://github.com/SingleZombie) |
| StyleAligned Pipeline                                                                                                    | Implementation of [Style Aligned Image Generation via Shared Attention](https://arxiv.org/abs/2312.02133)                                                                                                                                                                                                                                                                                                                                                                                                                                   | [StyleAligned Pipeline](#stylealigned-pipeline) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://drive.google.com/file/d/15X2E0jFPTajUIjS0FzX50OaHsCbP2lQ0/view?usp=sharing) | [Aryan V S](https://github.com/a-r-r-o-w) |
| AnimateDiff Image-To-Video Pipeline | Experimental Image-To-Video support for AnimateDiff (open to improvements) | [AnimateDiff Image To Video Pipeline](#animatediff-image-to-video-pipeline) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://drive.google.com/file/d/1TvzCDPHhfFtdcJZe4RLloAwyoLKuttWK/view?usp=sharing) | [Aryan V S](https://github.com/a-r-r-o-w) |
|   IP Adapter FaceID Stable Diffusion                                                                                               | Stable Diffusion Pipeline that supports IP Adapter Face ID                                                                                                                                                                                                                                                                                                                                                  |  [IP Adapter Face ID](#ip-adapter-face-id) | - | [Fabio Rigano](https://github.com/fabiorigano) |
|   InstantID Pipeline                                                                                               | Stable Diffusion XL Pipeline that supports InstantID                                                                                                                                                                                                                                                                                                                                                 |  [InstantID Pipeline](#instantid-pipeline) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/InstantX/InstantID) | [Haofan Wang](https://github.com/haofanwang) |
|   UFOGen Scheduler                                                                                               | Scheduler for UFOGen Model (compatible with Stable Diffusion pipelines)                                                                                                                                                                                                                                                                                                                                                 |  [UFOGen Scheduler](#ufogen-scheduler) | - | [dg845](https://github.com/dg845) |
| Stable Diffusion XL IPEX Pipeline | Accelerate Stable Diffusion XL inference pipeline with BF16/FP32 precision on Intel Xeon CPUs with [IPEX](https://github.com/intel/intel-extension-for-pytorch) | [Stable Diffusion XL on IPEX](#stable-diffusion-xl-on-ipex) | - | [Dan Li](https://github.com/ustcuna/) |
| Stable Diffusion BoxDiff Pipeline | Training-free controlled generation with bounding boxes using [BoxDiff](https://github.com/showlab/BoxDiff) | [Stable Diffusion BoxDiff Pipeline](#stable-diffusion-boxdiff) | - | [Jingyang Zhang](https://github.com/zjysteven/) |
|   FRESCO V2V Pipeline                                                                                                    | Implementation of [[CVPR 2024] FRESCO: Spatial-Temporal Correspondence for Zero-Shot Video Translation](https://arxiv.org/abs/2403.12962)                                                                                                                                                                                                                                                                                                                                                                                                                                      | [FRESCO V2V Pipeline](#fresco)      | - |              [Yifan Zhou](https://github.com/SingleZombie) |
| AnimateDiff IPEX Pipeline | Accelerate AnimateDiff inference pipeline with BF16/FP32 precision on Intel Xeon CPUs with [IPEX](https://github.com/intel/intel-extension-for-pytorch) | [AnimateDiff on IPEX](#animatediff-on-ipex) | - | [Dan Li](https://github.com/ustcuna/) |
| HunyuanDiT Differential Diffusion Pipeline | Applies [Differential Diffsuion](https://github.com/exx8/differential-diffusion) to [HunyuanDiT](https://github.com/huggingface/diffusers/pull/8240). | [HunyuanDiT with Differential Diffusion](#hunyuandit-with-differential-diffusion) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1v44a5fpzyr4Ffr4v2XBQ7BajzG874N4P?usp=sharing) | [Monjoy Choudhury](https://github.com/MnCSSJ4x) |

To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.

```py
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", custom_pipeline="filename_in_the_community_folder")
```

## Example usages

### Flux with CFG

Know more about Flux [here](https://blackforestlabs.ai/announcing-black-forest-labs/). Since Flux doesn't use CFG, this implementation provides one, inspired by the [PuLID Flux adaptation](https://github.com/ToTheBeginning/PuLID/blob/main/docs/pulid_for_flux.md).  

Example usage:

```py
from diffusers import DiffusionPipeline
import torch 

pipeline = DiffusionPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev", 
    torch_dtype=torch.bfloat16, 
    custom_pipeline="pipeline_flux_with_cfg"
)
pipeline.enable_model_cpu_offload()
prompt = "a watercolor painting of a unicorn"
negative_prompt = "pink"

img = pipeline(
    prompt=prompt, 
    negative_prompt=negative_prompt, 
    true_cfg=1.5, 
    guidance_scale=3.5, 
    num_images_per_prompt=1,
    generator=torch.manual_seed(0)
).images[0]
img.save("cfg_flux.png")
```

### Differential Diffusion

**Eran Levin, Ohad Fried**

**Tel Aviv University, Reichman University**

Diffusion models have revolutionized image generation and editing, producing state-of-the-art results in conditioned and unconditioned image synthesis. While current techniques enable user control over the degree of change in an image edit, the controllability is limited to global changes over an entire edited region. This paper introduces a novel framework that enables customization of the amount of change per pixel or per image region. Our framework can be integrated into any existing diffusion model, enhancing it with this capability. Such granular control on the quantity of change opens up a diverse array of new editing capabilities, such as control of the extent to which individual objects are modified, or the ability to introduce gradual spatial changes. Furthermore, we showcase the framework's effectiveness in soft-inpainting---the completion of portions of an image while subtly adjusting the surrounding areas to ensure seamless integration. Additionally, we introduce a new tool for exploring the effects of different change quantities. Our framework operates solely during inference, requiring no model training or fine-tuning. We demonstrate our method with the current open state-of-the-art models, and validate it via both quantitative and qualitative comparisons, and a user study.

![teaser-img](https://github.com/exx8/differential-diffusion/raw/main/assets/teaser.png)

You can find additional information about Differential Diffusion in the [paper](https://differential-diffusion.github.io/paper.pdf) or in the [project website](https://differential-diffusion.github.io/).

#### Usage example

```python
import torch
from torchvision import transforms

from diffusers import DPMSolverMultistepScheduler
from diffusers.utils import load_image
from examples.community.pipeline_stable_diffusion_xl_differential_img2img import (
    StableDiffusionXLDifferentialImg2ImgPipeline,
)


pipeline = StableDiffusionXLDifferentialImg2ImgPipeline.from_pretrained(
    "SG161222/RealVisXL_V4.0", torch_dtype=torch.float16, variant="fp16"
).to("cuda")
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, use_karras_sigmas=True)


def preprocess_image(image):
    image = image.convert("RGB")
    image = transforms.CenterCrop((image.size[1] // 64 * 64, image.size[0] // 64 * 64))(image)
    image = transforms.ToTensor()(image)
    image = image * 2 - 1
    image = image.unsqueeze(0).to("cuda")
    return image


def preprocess_map(map):
    map = map.convert("L")
    map = transforms.CenterCrop((map.size[1] // 64 * 64, map.size[0] // 64 * 64))(map)
    map = transforms.ToTensor()(map)
    map = map.to("cuda")
    return map


image = preprocess_image(
    load_image(
        "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/20240329211129_4024911930.png?download=true"
    )
)

mask = preprocess_map(
    load_image(
        "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/gradient_mask.png?download=true"
    )
)

prompt = "a green pear"
negative_prompt = "blurry"

image = pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    guidance_scale=7.5,
    num_inference_steps=25,
    original_image=image,
    image=image,
    strength=1.0,
    map=mask,
).images[0]

image.save("result.png")
```

### HD-Painter

Implementation of [HD-Painter: High-Resolution and Prompt-Faithful Text-Guided Image Inpainting with Diffusion Models](https://arxiv.org/abs/2312.14091).

![teaser-img](https://raw.githubusercontent.com/Picsart-AI-Research/HD-Painter/main/__assets__/github/teaser.jpg)

The abstract from the paper is:

Recent progress in text-guided image inpainting, based on the unprecedented success of text-to-image diffusion models, has led to exceptionally realistic and visually plausible results.
However, there is still significant potential for improvement in current text-to-image inpainting models, particularly in better aligning the inpainted area with user prompts and performing high-resolution inpainting.
Therefore, in this paper we introduce _HD-Painter_, a completely **training-free** approach that **accurately follows to prompts** and coherently **scales to high-resolution** image inpainting.
To this end, we design the _Prompt-Aware Introverted Attention (PAIntA)_ layer enhancing self-attention scores by prompt information and resulting in better text alignment generations.
To further improve the prompt coherence we introduce the _Reweighting Attention Score Guidance (RASG)_ mechanism seamlessly integrating a post-hoc sampling strategy into general form of DDIM to prevent out-of-distribution latent shifts.
Moreover, HD-Painter allows extension to larger scales by introducing a specialized super-resolution technique customized for inpainting, enabling the completion of missing regions in images of up to 2K resolution.
Our experiments demonstrate that HD-Painter surpasses existing state-of-the-art approaches qualitatively and quantitatively, achieving an impressive generation accuracy improvement of **61.4** vs **51.9**.
We will make the codes publicly available.

You can find additional information about Text2Video-Zero in the [paper](https://arxiv.org/abs/2312.14091) or the [original codebase](https://github.com/Picsart-AI-Research/HD-Painter).

#### Usage example

```python
import torch
from diffusers import DiffusionPipeline, DDIMScheduler
from diffusers.utils import load_image, make_image_grid

pipe = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-2-inpainting",
    custom_pipeline="hd_painter"
)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)

prompt = "wooden boat"
init_image = load_image("https://raw.githubusercontent.com/Picsart-AI-Research/HD-Painter/main/__assets__/samples/images/2.jpg")
mask_image = load_image("https://raw.githubusercontent.com/Picsart-AI-Research/HD-Painter/main/__assets__/samples/masks/2.png")

image = pipe(prompt, init_image, mask_image, use_rasg=True, use_painta=True, generator=torch.manual_seed(12345)).images[0]

make_image_grid([init_image, mask_image, image], rows=1, cols=3)
```

### Marigold Depth Estimation

Marigold is a universal monocular depth estimator that delivers accurate and sharp predictions in the wild. Based on Stable Diffusion, it is trained exclusively with synthetic depth data and excels in zero-shot adaptation to real-world imagery. This pipeline is an official implementation of the inference process. More details can be found on our [project page](https://marigoldmonodepth.github.io) and [full codebase](https://github.com/prs-eth/marigold) (also implemented with diffusers).

![Marigold Teaser](https://marigoldmonodepth.github.io/images/teaser_collage_compressed.jpg)

This depth estimation pipeline processes a single input image through multiple diffusion denoising stages to estimate depth maps. These maps are subsequently merged to produce the final output. Below is an example code snippet, including optional arguments:

```python
import numpy as np
import torch
from PIL import Image
from diffusers import DiffusionPipeline
from diffusers.utils import load_image

# Original DDIM version (higher quality)
pipe = DiffusionPipeline.from_pretrained(
    "prs-eth/marigold-v1-0",
    custom_pipeline="marigold_depth_estimation"
    # torch_dtype=torch.float16,                # (optional) Run with half-precision (16-bit float).
    # variant="fp16",                           # (optional) Use with `torch_dtype=torch.float16`, to directly load fp16 checkpoint
)

# (New) LCM version (faster speed)
pipe = DiffusionPipeline.from_pretrained(
    "prs-eth/marigold-depth-lcm-v1-0",
    custom_pipeline="marigold_depth_estimation"
    # torch_dtype=torch.float16,                # (optional) Run with half-precision (16-bit float).
    # variant="fp16",                           # (optional) Use with `torch_dtype=torch.float16`, to directly load fp16 checkpoint
)

pipe.to("cuda")

img_path_or_url = "https://share.phys.ethz.ch/~pf/bingkedata/marigold/pipeline_example.jpg"
image: Image.Image = load_image(img_path_or_url)

pipeline_output = pipe(
    image,                    # Input image.
    # ----- recommended setting for DDIM version -----
    # denoising_steps=10,     # (optional) Number of denoising steps of each inference pass. Default: 10.
    # ensemble_size=10,       # (optional) Number of inference passes in the ensemble. Default: 10.
    # ------------------------------------------------

    # ----- recommended setting for LCM version ------
    # denoising_steps=4,
    # ensemble_size=5,
    # -------------------------------------------------

    # processing_res=768,     # (optional) Maximum resolution of processing. If set to 0: will not resize at all. Defaults to 768.
    # match_input_res=True,   # (optional) Resize depth prediction to match input resolution.
    # batch_size=0,           # (optional) Inference batch size, no bigger than `num_ensemble`. If set to 0, the script will automatically decide the proper batch size. Defaults to 0.
    # seed=2024,              # (optional) Random seed can be set to ensure additional reproducibility. Default: None (unseeded). Note: forcing --batch_size 1 helps to increase reproducibility. To ensure full reproducibility, deterministic mode needs to be used.
    # color_map="Spectral",   # (optional) Colormap used to colorize the depth map. Defaults to "Spectral". Set to `None` to skip colormap generation.
    # show_progress_bar=True, # (optional) If true, will show progress bars of the inference progress.
)

depth: np.ndarray = pipeline_output.depth_np                    # Predicted depth map
depth_colored: Image.Image = pipeline_output.depth_colored      # Colorized prediction

# Save as uint16 PNG
depth_uint16 = (depth * 65535.0).astype(np.uint16)
Image.fromarray(depth_uint16).save("./depth_map.png", mode="I;16")

# Save colorized depth map
depth_colored.save("./depth_colored.png")
```

### LLM-grounded Diffusion

LMD and LMD+ greatly improves the prompt understanding ability of text-to-image generation models by introducing an LLM as a front-end prompt parser and layout planner. It improves spatial reasoning, the understanding of negation, attribute binding, generative numeracy, etc. in a unified manner without explicitly aiming for each. LMD is completely training-free (i.e., uses SD model off-the-shelf). LMD+ takes in additional adapters for better control. This is a reproduction of LMD+ model used in our work. [Project page.](https://llm-grounded-diffusion.github.io/) [See our full codebase (also with diffusers).](https://github.com/TonyLianLong/LLM-groundedDiffusion)

![Main Image](https://llm-grounded-diffusion.github.io/main_figure.jpg)
![Visualizations: Enhanced Prompt Understanding](https://llm-grounded-diffusion.github.io/visualizations.jpg)

This pipeline can be used with an LLM or on its own. We provide a parser that parses LLM outputs to the layouts. You can obtain the prompt to input to the LLM for layout generation [here](https://github.com/TonyLianLong/LLM-groundedDiffusion/blob/main/prompt.py). After feeding the prompt to an LLM (e.g., GPT-4 on ChatGPT website), you can feed the LLM response into our pipeline.

The following code has been tested on 1x RTX 4090, but it should also support GPUs with lower GPU memory.

#### Use this pipeline with an LLM

```python
import torch
from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained(
    "longlian/lmd_plus",
    custom_pipeline="llm_grounded_diffusion",
    custom_revision="main",
    variant="fp16", torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()

# Generate directly from a text prompt and an LLM response
prompt = "a waterfall and a modern high speed train in a beautiful forest with fall foliage"
phrases, boxes, bg_prompt, neg_prompt = pipe.parse_llm_response("""
[('a waterfall', [71, 105, 148, 258]), ('a modern high speed train', [255, 223, 181, 149])]
Background prompt: A beautiful forest with fall foliage
Negative prompt:
""")

images = pipe(
    prompt=prompt,
    negative_prompt=neg_prompt,
    phrases=phrases,
    boxes=boxes,
    gligen_scheduled_sampling_beta=0.4,
    output_type="pil",
    num_inference_steps=50,
    lmd_guidance_kwargs={}
).images

images[0].save("./lmd_plus_generation.jpg")
```

#### Use this pipeline on its own for layout generation

```python
import torch
from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained(
    "longlian/lmd_plus",
    custom_pipeline="llm_grounded_diffusion",
    variant="fp16", torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()

# Generate an image described by the prompt and
# insert objects described by text at the region defined by bounding boxes
prompt = "a waterfall and a modern high speed train in a beautiful forest with fall foliage"
boxes = [[0.1387, 0.2051, 0.4277, 0.7090], [0.4980, 0.4355, 0.8516, 0.7266]]
phrases = ["a waterfall", "a modern high speed train"]

images = pipe(
    prompt=prompt,
    phrases=phrases,
    boxes=boxes,
    gligen_scheduled_sampling_beta=0.4,
    output_type="pil",
    num_inference_steps=50,
    lmd_guidance_kwargs={}
).images

images[0].save("./lmd_plus_generation.jpg")
```

### CLIP Guided Stable Diffusion

CLIP guided stable diffusion can help to generate more realistic images
by guiding stable diffusion at every denoising step with an additional CLIP model.

The following code requires roughly 12GB of GPU RAM.

```python
from diffusers import DiffusionPipeline
from transformers import CLIPImageProcessor, CLIPModel
import torch


feature_extractor = CLIPImageProcessor.from_pretrained("laion/CLIP-ViT-B-32-laion2B-s34B-b79K")
clip_model = CLIPModel.from_pretrained("laion/CLIP-ViT-B-32-laion2B-s34B-b79K", torch_dtype=torch.float16)


guided_pipeline = DiffusionPipeline.from_pretrained(
    "stable-diffusion-v1-5/stable-diffusion-v1-5",
    custom_pipeline="clip_guided_stable_diffusion",
    clip_model=clip_model,
    feature_extractor=feature_extractor,
    torch_dtype=torch.float16,
)
guided_pipeline.enable_attention_slicing()
guided_pipeline = guided_pipeline.to("cuda")

prompt = "fantasy book cover, full moon, fantasy forest landscape, golden vector elements, fantasy magic, dark light night, intricate, elegant, sharp focus, illustration, highly detailed, digital painting, concept art, matte, art by WLOP and Artgerm and Albert Bierstadt, masterpiece"

generator = torch.Generator(device="cuda").manual_seed(0)
images = []
for i in range(4):
    image = guided_pipeline(
        prompt,
        num_inference_steps=50,
        guidance_scale=7.5,
        clip_guidance_scale=100,
        num_cutouts=4,
        use_cutouts=False,
        generator=generator,
    ).images[0]
    images.append(image)

# save images locally
for i, img in enumerate(images):
    img.save(f"./clip_guided_sd/image_{i}.png")
```

The `images` list contains a list of PIL images that can be saved locally or displayed directly in a google colab.
Generated images tend to be of higher quality than natively using stable diffusion. E.g. the above script generates the following images:

![clip_guidance](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/clip_guidance/merged_clip_guidance.jpg).

### One Step Unet

The dummy "one-step-unet" can be run as follows:

```python
from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained("google/ddpm-cifar10-32", custom_pipeline="one_step_unet")
pipe()
```

**Note**: This community pipeline is not useful as a feature, but rather just serves as an example of how community pipelines can be added (see <https://github.com/huggingface/diffusers/issues/841>).

### Stable Diffusion Interpolation

The following code can be run on a GPU of at least 8GB VRAM and should take approximately 5 minutes.

```python
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    variant='fp16',
    torch_dtype=torch.float16,
    safety_checker=None,  # Very important for videos...lots of false positives while interpolating
    custom_pipeline="interpolate_stable_diffusion",
).to('cuda')
pipe.enable_attention_slicing()

frame_filepaths = pipe.walk(
    prompts=['a dog', 'a cat', 'a horse'],
    seeds=[42, 1337, 1234],
    num_interpolation_steps=16,
    output_dir='./dreams',
    batch_size=4,
    height=512,
    width=512,
    guidance_scale=8.5,
    num_inference_steps=50,
)
```

The output of the `walk(...)` function returns a list of images saved under the folder as defined in `output_dir`. You can use these images to create videos of stable diffusion.

> **Please have a look at <https://github.com/nateraw/stable-diffusion-videos> for more in-detail information on how to create videos using stable diffusion as well as more feature-complete functionality.**

### Stable Diffusion Mega

The Stable Diffusion Mega Pipeline lets you use the main use cases of the stable diffusion pipeline in a single class.

```python
#!/usr/bin/env python3
from diffusers import DiffusionPipeline
import PIL
import requests
from io import BytesIO
import torch


def download_image(url):
    response = requests.get(url)
    return PIL.Image.open(BytesIO(response.content)).convert("RGB")

pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", custom_pipeline="stable_diffusion_mega", torch_dtype=torch.float16, variant="fp16")
pipe.to("cuda")
pipe.enable_attention_slicing()


### Text-to-Image
images = pipe.text2img("An astronaut riding a horse").images

### Image-to-Image
init_image = download_image("https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg")

prompt = "A fantasy landscape, trending on artstation"

images = pipe.img2img(prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5).images

### Inpainting
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))

prompt = "a cat sitting on a bench"
images = pipe.inpaint(prompt=prompt, image=init_image, mask_image=mask_image, strength=0.75).images
```

As shown above this one pipeline can run all both "text-to-image", "image-to-image", and "inpainting" in one pipeline.

### Long Prompt Weighting Stable Diffusion

Features of this custom pipeline:

- Input a prompt without the 77 token length limit.
- Includes tx2img, img2img, and inpainting pipelines.
- Emphasize/weigh part of your prompt with parentheses as so: `a baby deer with (big eyes)`
- De-emphasize part of your prompt as so: `a [baby] deer with big eyes`
- Precisely weigh part of your prompt as so: `a baby deer with (big eyes:1.3)`

Prompt weighting equivalents:

- `a baby deer with` == `(a baby deer with:1.0)`
- `(big eyes)` == `(big eyes:1.1)`
- `((big eyes))` == `(big eyes:1.21)`
- `[big eyes]` == `(big eyes:0.91)`

You can run this custom pipeline as so:

#### PyTorch

```python
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained(
    'hakurei/waifu-diffusion',
    custom_pipeline="lpw_stable_diffusion",
    torch_dtype=torch.float16
)
pipe = pipe.to("cuda")

prompt = "best_quality (1girl:1.3) bow bride brown_hair closed_mouth frilled_bow frilled_hair_tubes frills (full_body:1.3) fox_ear hair_bow hair_tubes happy hood japanese_clothes kimono long_sleeves red_bow smile solo tabi uchikake white_kimono wide_sleeves cherry_blossoms"
neg_prompt = "lowres, bad_anatomy, error_body, error_hair, error_arm, error_hands, bad_hands, error_fingers, bad_fingers, missing_fingers, error_legs, bad_legs, multiple_legs, missing_legs, error_lighting, error_shadow, error_reflection, text, error, extra_digit, fewer_digits, cropped, worst_quality, low_quality, normal_quality, jpeg_artifacts, signature, watermark, username, blurry"

pipe.text2img(prompt, negative_prompt=neg_prompt, width=512, height=512, max_embeddings_multiples=3).images[0]
```

#### onnxruntime

```python
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained(
    'CompVis/stable-diffusion-v1-4',
    custom_pipeline="lpw_stable_diffusion_onnx",
    revision="onnx",
    provider="CUDAExecutionProvider"
)

prompt = "a photo of an astronaut riding a horse on mars, best quality"
neg_prompt = "lowres, bad anatomy, error body, error hair, error arm, error hands, bad hands, error fingers, bad fingers, missing fingers, error legs, bad legs, multiple legs, missing legs, error lighting, error shadow, error reflection, text, error, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry"

pipe.text2img(prompt, negative_prompt=neg_prompt, width=512, height=512, max_embeddings_multiples=3).images[0]
```

If you see `Token indices sequence length is longer than the specified maximum sequence length for this model ( *** > 77 ) . Running this sequence through the model will result in indexing errors`. Do not worry, it is normal.

### Speech to Image

The following code can generate an image from an audio sample using pre-trained OpenAI whisper-small and Stable Diffusion.

```Python
import torch

import matplotlib.pyplot as plt
from datasets import load_dataset
from diffusers import DiffusionPipeline
from transformers import (
    WhisperForConditionalGeneration,
    WhisperProcessor,
)


device = "cuda" if torch.cuda.is_available() else "cpu"

ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")

audio_sample = ds[3]

text = audio_sample["text"].lower()
speech_data = audio_sample["audio"]["array"]

model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").to(device)
processor = WhisperProcessor.from_pretrained("openai/whisper-small")

diffuser_pipeline = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="speech_to_image_diffusion",
    speech_model=model,
    speech_processor=processor,
    torch_dtype=torch.float16,
)

diffuser_pipeline.enable_attention_slicing()
diffuser_pipeline = diffuser_pipeline.to(device)

output = diffuser_pipeline(speech_data)
plt.imshow(output.images[0])
```

This example produces the following image:

![image](https://user-images.githubusercontent.com/45072645/196901736-77d9c6fc-63ee-4072-90b0-dc8b903d63e3.png)

### Wildcard Stable Diffusion

Following the great examples from <https://github.com/jtkelm2/stable-diffusion-webui-1/blob/master/scripts/wildcards.py> and <https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts#wildcards>, here's a minimal implementation that allows for users to add "wildcards", denoted by `__wildcard__` to prompts that are used as placeholders for randomly sampled values given by either a dictionary or a `.txt` file. For example:

Say we have a prompt:

```
prompt = "__animal__ sitting on a __object__ wearing a __clothing__"
```

We can then define possible values to be sampled for `animal`, `object`, and `clothing`. These can either be from a `.txt` with the same name as the category.

The possible values can also be defined / combined by using a dictionary like: `{"animal":["dog", "cat", mouse"]}`.

The actual pipeline works just like `StableDiffusionPipeline`, except the `__call__` method takes in:

`wildcard_files`: list of file paths for wild card replacement
`wildcard_option_dict`: dict with key as `wildcard` and values as a list of possible replacements
`num_prompt_samples`: number of prompts to sample, uniformly sampling wildcards

A full example:

create `animal.txt`, with contents like:

```
dog
cat
mouse
```

create `object.txt`, with contents like:

```
chair
sofa
bench
```

```python
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="wildcard_stable_diffusion",
    torch_dtype=torch.float16,
)
prompt = "__animal__ sitting on a __object__ wearing a __clothing__"
out = pipe(
    prompt,
    wildcard_option_dict={
        "clothing":["hat", "shirt", "scarf", "beret"]
    },
    wildcard_files=["object.txt", "animal.txt"],
    num_prompt_samples=1
)
```

### Composable Stable diffusion

[Composable Stable Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/) proposes conjunction and negation (negative prompts) operators for compositional generation with conditional diffusion models.

```python
import torch as th
import numpy as np
import torchvision.utils as tvu

from diffusers import DiffusionPipeline

import argparse

parser = argparse.ArgumentParser()
parser.add_argument("--prompt", type=str, default="mystical trees | A magical pond | dark",
                    help="use '|' as the delimiter to compose separate sentences.")
parser.add_argument("--steps", type=int, default=50)
parser.add_argument("--scale", type=float, default=7.5)
parser.add_argument("--weights", type=str, default="7.5 | 7.5 | -7.5")
parser.add_argument("--seed", type=int, default=2)
parser.add_argument("--model_path", type=str, default="CompVis/stable-diffusion-v1-4")
parser.add_argument("--num_images", type=int, default=1)
args = parser.parse_args()

has_cuda = th.cuda.is_available()
device = th.device('cpu' if not has_cuda else 'cuda')

prompt = args.prompt
scale = args.scale
steps = args.steps

pipe = DiffusionPipeline.from_pretrained(
    args.model_path,
    custom_pipeline="composable_stable_diffusion",
).to(device)

pipe.safety_checker = None

images = []
generator = th.Generator("cuda").manual_seed(args.seed)
for i in range(args.num_images):
    image = pipe(prompt, guidance_scale=scale, num_inference_steps=steps,
                 weights=args.weights, generator=generator).images[0]
    images.append(th.from_numpy(np.array(image)).permute(2, 0, 1) / 255.)
grid = tvu.make_grid(th.stack(images, dim=0), nrow=4, padding=0)
tvu.save_image(grid, f'{prompt}_{args.weights}' + '.png')
```

### Imagic Stable Diffusion

Allows you to edit an image using stable diffusion.

```python
import requests
from PIL import Image
from io import BytesIO
import torch
import os
from diffusers import DiffusionPipeline, DDIMScheduler

has_cuda = torch.cuda.is_available()
device = torch.device('cpu' if not has_cuda else 'cuda')
pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    safety_checker=None,
    custom_pipeline="imagic_stable_diffusion",
    scheduler=DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
).to(device)
generator = torch.Generator("cuda").manual_seed(0)
seed = 0
prompt = "A photo of Barack Obama smiling with a big grin"
url = 'https://www.dropbox.com/s/6tlwzr73jd1r9yk/obama.png?dl=1'
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((512, 512))
res = pipe.train(
    prompt,
    image=init_image,
    generator=generator)
res = pipe(alpha=1, guidance_scale=7.5, num_inference_steps=50)
os.makedirs("imagic", exist_ok=True)
image = res.images[0]
image.save('./imagic/imagic_image_alpha_1.png')
res = pipe(alpha=1.5, guidance_scale=7.5, num_inference_steps=50)
image = res.images[0]
image.save('./imagic/imagic_image_alpha_1_5.png')
res = pipe(alpha=2, guidance_scale=7.5, num_inference_steps=50)
image = res.images[0]
image.save('./imagic/imagic_image_alpha_2.png')
```

### Seed Resizing

Test seed resizing. Originally generate an image in 512 by 512, then generate image with same seed at 512 by 592 using seed resizing. Finally, generate 512 by 592 using original stable diffusion pipeline.

```python
import torch as th
import numpy as np
from diffusers import DiffusionPipeline

has_cuda = th.cuda.is_available()
device = th.device('cpu' if not has_cuda else 'cuda')

pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="seed_resize_stable_diffusion"
).to(device)

def dummy(images, **kwargs):
    return images, False

pipe.safety_checker = dummy


images = []
th.manual_seed(0)
generator = th.Generator("cuda").manual_seed(0)

seed = 0
prompt = "A painting of a futuristic cop"

width = 512
height = 512

res = pipe(
    prompt,
    guidance_scale=7.5,
    num_inference_steps=50,
    height=height,
    width=width,
    generator=generator)
image = res.images[0]
image.save('./seed_resize/seed_resize_{w}_{h}_image.png'.format(w=width, h=height))


th.manual_seed(0)
generator = th.Generator("cuda").manual_seed(0)

pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="/home/mark/open_source/diffusers/examples/community/"
).to(device)

width = 512
height = 592

res = pipe(
    prompt,
    guidance_scale=7.5,
    num_inference_steps=50,
    height=height,
    width=width,
    generator=generator)
image = res.images[0]
image.save('./seed_resize/seed_resize_{w}_{h}_image.png'.format(w=width, h=height))

pipe_compare = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="/home/mark/open_source/diffusers/examples/community/"
).to(device)

res = pipe_compare(
    prompt,
    guidance_scale=7.5,
    num_inference_steps=50,
    height=height,
    width=width,
    generator=generator
)

image = res.images[0]
image.save('./seed_resize/seed_resize_{w}_{h}_image_compare.png'.format(w=width, h=height))
```

### Multilingual Stable Diffusion Pipeline

The following code can generate images from texts in different languages using the pre-trained [mBART-50 many-to-one multilingual machine translation model](https://huggingface.co/facebook/mbart-large-50-many-to-one-mmt) and Stable Diffusion.

```python
from PIL import Image

import torch

from diffusers import DiffusionPipeline
from transformers import (
    pipeline,
    MBart50TokenizerFast,
    MBartForConditionalGeneration,
)
device = "cuda" if torch.cuda.is_available() else "cpu"
device_dict = {"cuda": 0, "cpu": -1}

# helper function taken from: https://huggingface.co/blog/stable_diffusion
def image_grid(imgs, rows, cols):
    assert len(imgs) == rows*cols

    w, h = imgs[0].size
    grid = Image.new('RGB', size=(cols*w, rows*h))
    grid_w, grid_h = grid.size

    for i, img in enumerate(imgs):
        grid.paste(img, box=(i%cols*w, i//cols*h))
    return grid

# Add language detection pipeline
language_detection_model_ckpt = "papluca/xlm-roberta-base-language-detection"
language_detection_pipeline = pipeline("text-classification",
                                       model=language_detection_model_ckpt,
                                       device=device_dict[device])

# Add model for language translation
trans_tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-one-mmt")
trans_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-one-mmt").to(device)

diffuser_pipeline = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="multilingual_stable_diffusion",
    detection_pipeline=language_detection_pipeline,
    translation_model=trans_model,
    translation_tokenizer=trans_tokenizer,
    torch_dtype=torch.float16,
)

diffuser_pipeline.enable_attention_slicing()
diffuser_pipeline = diffuser_pipeline.to(device)

prompt = ["a photograph of an astronaut riding a horse",
          "Una casa en la playa",
          "Ein Hund, der Orange isst",
          "Un restaurant parisien"]

output = diffuser_pipeline(prompt)

images = output.images

grid = image_grid(images, rows=2, cols=2)
```

This example produces the following images:
![image](https://user-images.githubusercontent.com/4313860/198328706-295824a4-9856-4ce5-8e66-278ceb42fd29.png)

### GlueGen Stable Diffusion Pipeline

GlueGen is a minimal adapter that allows alignment between any encoder (Text Encoder of different language, Multilingual Roberta, AudioClip) and CLIP text encoder used in standard Stable Diffusion model. This method allows easy language adaptation to available english Stable Diffusion checkpoints without the need of an image captioning dataset as well as long training hours.

Make sure you downloaded `gluenet_French_clip_overnorm_over3_noln.ckpt` for French (there are also pre-trained weights for Chinese, Italian, Japanese, Spanish or train your own) at [GlueGen's official repo](https://github.com/salesforce/GlueGen/tree/main).

```python
from PIL import Image

import torch

from transformers import AutoModel, AutoTokenizer

from diffusers import DiffusionPipeline

if __name__ == "__main__":
    device = "cuda"

    lm_model_id = "xlm-roberta-large"
    token_max_length = 77

    text_encoder = AutoModel.from_pretrained(lm_model_id)
    tokenizer = AutoTokenizer.from_pretrained(lm_model_id, model_max_length=token_max_length, use_fast=False)

    tensor_norm = torch.Tensor([[43.8203],[28.3668],[27.9345],[28.0084],[28.2958],[28.2576],[28.3373],[28.2695],[28.4097],[28.2790],[28.2825],[28.2807],[28.2775],[28.2708],[28.2682],[28.2624],[28.2589],[28.2611],[28.2616],[28.2639],[28.2613],[28.2566],[28.2615],[28.2665],[28.2799],[28.2885],[28.2852],[28.2863],[28.2780],[28.2818],[28.2764],[28.2532],[28.2412],[28.2336],[28.2514],[28.2734],[28.2763],[28.2977],[28.2971],[28.2948],[28.2818],[28.2676],[28.2831],[28.2890],[28.2979],[28.2999],[28.3117],[28.3363],[28.3554],[28.3626],[28.3589],[28.3597],[28.3543],[28.3660],[28.3731],[28.3717],[28.3812],[28.3753],[28.3810],[28.3777],[28.3693],[28.3713],[28.3670],[28.3691],[28.3679],[28.3624],[28.3703],[28.3703],[28.3720],[28.3594],[28.3576],[28.3562],[28.3438],[28.3376],[28.3389],[28.3433],[28.3191]])

    pipeline = DiffusionPipeline.from_pretrained(
        "stable-diffusion-v1-5/stable-diffusion-v1-5",
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        custom_pipeline="gluegen"
    ).to(device)
    pipeline.load_language_adapter("gluenet_French_clip_overnorm_over3_noln.ckpt", num_token=token_max_length, dim=1024, dim_out=768, tensor_norm=tensor_norm)

    prompt = "une voiture sur la plage"

    generator = torch.Generator(device=device).manual_seed(42)
    image = pipeline(prompt, generator=generator).images[0]
    image.save("gluegen_output_fr.png")
```

Which will produce:

![output_image](https://github.com/rootonchair/diffusers/assets/23548268/db43ffb6-8667-47c1-8872-26f85dc0a57f)

### Image to Image Inpainting Stable Diffusion

Similar to the standard stable diffusion inpainting example, except with the addition of an `inner_image` argument.

`image`, `inner_image`, and `mask` should have the same dimensions. `inner_image` should have an alpha (transparency) channel.

The aim is to overlay two images, then mask out the boundary between `image` and `inner_image` to allow stable diffusion to make the connection more seamless.
For example, this could be used to place a logo on a shirt and make it blend seamlessly.

```python
import PIL
import torch

from diffusers import DiffusionPipeline

image_path = "./path-to-image.png"
inner_image_path = "./path-to-inner-image.png"
mask_path = "./path-to-mask.png"

init_image = PIL.Image.open(image_path).convert("RGB").resize((512, 512))
inner_image = PIL.Image.open(inner_image_path).convert("RGBA").resize((512, 512))
mask_image = PIL.Image.open(mask_path).convert("RGB").resize((512, 512))

pipe = DiffusionPipeline.from_pretrained(
    "runwayml/stable-diffusion-inpainting",
    custom_pipeline="img2img_inpainting",
    torch_dtype=torch.float16
)
pipe = pipe.to("cuda")

prompt = "Your prompt here!"
image = pipe(prompt=prompt, image=init_image, inner_image=inner_image, mask_image=mask_image).images[0]
```

![2 by 2 grid demonstrating image to image inpainting.](https://user-images.githubusercontent.com/44398246/203506577-ec303be4-887e-4ebd-a773-c83fcb3dd01a.png)

### Text Based Inpainting Stable Diffusion

Use a text prompt to generate the mask for the area to be inpainted.
Currently uses the CLIPSeg model for mask generation, then calls the standard Stable Diffusion Inpainting pipeline to perform the inpainting.

```python
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
from diffusers import DiffusionPipeline

from PIL import Image
import requests

processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")

pipe = DiffusionPipeline.from_pretrained(
    "runwayml/stable-diffusion-inpainting",
    custom_pipeline="text_inpainting",
    segmentation_model=model,
    segmentation_processor=processor
)
pipe = pipe.to("cuda")


url = "https://github.com/timojl/clipseg/blob/master/example_image.jpg?raw=true"
image = Image.open(requests.get(url, stream=True).raw).resize((512, 512))
text = "a glass"  # will mask out this text
prompt = "a cup"  # the masked out region will be replaced with this

image = pipe(image=image, text=text, prompt=prompt).images[0]
```

### Bit Diffusion

Based <https://arxiv.org/abs/2208.04202>, this is used for diffusion on discrete data - eg, discrete image data, DNA sequence data. An unconditional discrete image can be generated like this:

```python
from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained("google/ddpm-cifar10-32", custom_pipeline="bit_diffusion")
image = pipe().images[0]
```

### Stable Diffusion with K Diffusion

Make sure you have @crowsonkb's <https://github.com/crowsonkb/k-diffusion> installed:

```sh
pip install k-diffusion
```

You can use the community pipeline as follows:

```python
from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="sd_text2img_k_diffusion")
pipe = pipe.to("cuda")

prompt = "an astronaut riding a horse on mars"
pipe.set_scheduler("sample_heun")
generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe(prompt, generator=generator, num_inference_steps=20).images[0]

image.save("./astronaut_heun_k_diffusion.png")
```

To make sure that K Diffusion and `diffusers` yield the same results:

**Diffusers**:

```python
from diffusers import DiffusionPipeline, EulerDiscreteScheduler

seed = 33

pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")

generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe(prompt, generator=generator, num_inference_steps=50).images[0]
```

![diffusers_euler](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/k_diffusion/astronaut_euler.png)

**K Diffusion**:

```python
from diffusers import DiffusionPipeline, EulerDiscreteScheduler

seed = 33

pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="sd_text2img_k_diffusion")
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")

pipe.set_scheduler("sample_euler")
generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe(prompt, generator=generator, num_inference_steps=50).images[0]
```

![diffusers_euler](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/k_diffusion/astronaut_euler_k_diffusion.png)

### Checkpoint Merger Pipeline

Based on the AUTOMATIC1111/webui for checkpoint merging. This is a custom pipeline that merges up to 3 pretrained model checkpoints as long as they are in the HuggingFace model_index.json format.

The checkpoint merging is currently memory intensive as it modifies the weights of a DiffusionPipeline object in place. Expect at least 13GB RAM usage on Kaggle GPU kernels and
on Colab you might run out of the 12GB memory even while merging two checkpoints.

Usage:-

```python
from diffusers import DiffusionPipeline

# Return a CheckpointMergerPipeline class that allows you to merge checkpoints.
# The checkpoint passed here is ignored. But still pass one of the checkpoints you plan to
# merge for convenience
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="checkpoint_merger")

# There are multiple possible scenarios:
# The pipeline with the merged checkpoints is returned in all the scenarios

# Compatible checkpoints a.k.a matched model_index.json files. Ignores the meta attributes in model_index.json during comparison.( attrs with _ as prefix )
merged_pipe = pipe.merge(["CompVis/stable-diffusion-v1-4"," CompVis/stable-diffusion-v1-2"], interp="sigmoid", alpha=0.4)

# Incompatible checkpoints in model_index.json but merge might be possible. Use force=True to ignore model_index.json compatibility
merged_pipe_1 = pipe.merge(["CompVis/stable-diffusion-v1-4", "hakurei/waifu-diffusion"], force=True, interp="sigmoid", alpha=0.4)

# Three checkpoint merging. Only "add_difference" method actually works on all three checkpoints. Using any other options will ignore the 3rd checkpoint.
merged_pipe_2 = pipe.merge(["CompVis/stable-diffusion-v1-4", "hakurei/waifu-diffusion", "prompthero/openjourney"], force=True, interp="add_difference", alpha=0.4)

prompt = "An astronaut riding a horse on Mars"

image = merged_pipe(prompt).images[0]
```

Some examples along with the merge details:

1. "CompVis/stable-diffusion-v1-4" + "hakurei/waifu-diffusion" ; Sigmoid interpolation; alpha = 0.8

![Stable plus Waifu Sigmoid 0.8](https://huggingface.co/datasets/NagaSaiAbhinay/CheckpointMergerSamples/resolve/main/stability_v1_4_waifu_sig_0.8.png)

2. "hakurei/waifu-diffusion" + "prompthero/openjourney" ; Inverse Sigmoid interpolation; alpha = 0.8

![Waifu plus openjourney Sigmoid 0.8](https://huggingface.co/datasets/NagaSaiAbhinay/CheckpointMergerSamples/resolve/main/waifu_openjourney_inv_sig_0.8.png)

3. "CompVis/stable-diffusion-v1-4" + "hakurei/waifu-diffusion" + "prompthero/openjourney"; Add Difference interpolation; alpha = 0.5

![Stable plus Waifu plus openjourney add_diff 0.5](https://huggingface.co/datasets/NagaSaiAbhinay/CheckpointMergerSamples/resolve/main/stable_waifu_openjourney_add_diff_0.5.png)

### Stable Diffusion Comparisons

This Community Pipeline enables the comparison between the 4 checkpoints that exist for Stable Diffusion. They can be found through the following links:

1. [Stable Diffusion v1.1](https://huggingface.co/CompVis/stable-diffusion-v1-1)
2. [Stable Diffusion v1.2](https://huggingface.co/CompVis/stable-diffusion-v1-2)
3. [Stable Diffusion v1.3](https://huggingface.co/CompVis/stable-diffusion-v1-3)
4. [Stable Diffusion v1.4](https://huggingface.co/CompVis/stable-diffusion-v1-4)

```python
from diffusers import DiffusionPipeline
import matplotlib.pyplot as plt

pipe = DiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4', custom_pipeline='suvadityamuk/StableDiffusionComparison')
pipe.enable_attention_slicing()
pipe = pipe.to('cuda')
prompt = "an astronaut riding a horse on mars"
output = pipe(prompt)

plt.subplots(2,2,1)
plt.imshow(output.images[0])
plt.title('Stable Diffusion v1.1')
plt.axis('off')
plt.subplots(2,2,2)
plt.imshow(output.images[1])
plt.title('Stable Diffusion v1.2')
plt.axis('off')
plt.subplots(2,2,3)
plt.imshow(output.images[2])
plt.title('Stable Diffusion v1.3')
plt.axis('off')
plt.subplots(2,2,4)
plt.imshow(output.images[3])
plt.title('Stable Diffusion v1.4')
plt.axis('off')

plt.show()
```

As a result, you can look at a grid of all 4 generated images being shown together, that captures a difference the advancement of the training between the 4 checkpoints.

### Magic Mix

Implementation of the [MagicMix: Semantic Mixing with Diffusion Models](https://arxiv.org/abs/2210.16056) paper. This is a Diffusion Pipeline for semantic mixing of an image and a text prompt to create a new concept while preserving the spatial layout and geometry of the subject in the image. The pipeline takes an image that provides the layout semantics and a prompt that provides the content semantics for the mixing process.

There are 3 parameters for the method-

- `mix_factor`: It is the interpolation constant used in the layout generation phase. The greater the value of `mix_factor`, the greater the influence of the prompt on the layout generation process.
- `kmax` and `kmin`: These determine the range for the layout and content generation process. A higher value of kmax results in loss of more information about the layout of the original image and a higher value of kmin results in more steps for content generation process.

Here is an example usage-

```python
from diffusers import DiffusionPipeline, DDIMScheduler
from PIL import Image

pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="magic_mix",
    scheduler=DDIMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler"),
).to('cuda')

img = Image.open('phone.jpg')
mix_img = pipe(
    img,
    prompt='bed',
    kmin=0.3,
    kmax=0.5,
    mix_factor=0.5,
    )
mix_img.save('phone_bed_mix.jpg')
```

The `mix_img` is a PIL image that can be saved locally or displayed directly in a google colab. Generated image is a mix of the layout semantics of the given image and the content semantics of the prompt.

E.g. the above script generates the following image:

`phone.jpg`

![206903102-34e79b9f-9ed2-4fac-bb38-82871343c655](https://user-images.githubusercontent.com/59410571/209578593-141467c7-d831-4792-8b9a-b17dc5e47816.jpg)

`phone_bed_mix.jpg`

![206903104-913a671d-ef53-4ae4-919d-64c3059c8f67](https://user-images.githubusercontent.com/59410571/209578602-70f323fa-05b7-4dd6-b055-e40683e37914.jpg)

For more example generations check out this [demo notebook](https://github.com/daspartho/MagicMix/blob/main/demo.ipynb).

### Stable UnCLIP

UnCLIPPipeline("kakaobrain/karlo-v1-alpha") provides a prior model that can generate clip image embedding from text.
StableDiffusionImageVariationPipeline("lambdalabs/sd-image-variations-diffusers") provides a decoder model than can generate images from clip image embedding.

```python
import torch
from diffusers import DiffusionPipeline

device = torch.device("cpu" if not torch.cuda.is_available() else "cuda")

pipeline = DiffusionPipeline.from_pretrained(
    "kakaobrain/karlo-v1-alpha",
    torch_dtype=torch.float16,
    custom_pipeline="stable_unclip",
    decoder_pipe_kwargs=dict(
        image_encoder=None,
    ),
)
pipeline.to(device)

prompt = "a shiba inu wearing a beret and black turtleneck"
random_generator = torch.Generator(device=device).manual_seed(1000)
output = pipeline(
    prompt=prompt,
    width=512,
    height=512,
    generator=random_generator,
    prior_guidance_scale=4,
    prior_num_inference_steps=25,
    decoder_guidance_scale=8,
    decoder_num_inference_steps=50,
)

image = output.images[0]
image.save("./shiba-inu.jpg")

# debug

# `pipeline.decoder_pipe` is a regular StableDiffusionImageVariationPipeline instance.
# It is used to convert clip image embedding to latents, then fed into VAE decoder.
print(pipeline.decoder_pipe.__class__)
# <class 'diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_image_variation.StableDiffusionImageVariationPipeline'>

# this pipeline only uses prior module in "kakaobrain/karlo-v1-alpha"
# It is used to convert clip text embedding to clip image embedding.
print(pipeline)
# StableUnCLIPPipeline {
#   "_class_name": "StableUnCLIPPipeline",
#   "_diffusers_version": "0.12.0.dev0",
#   "prior": [
#     "diffusers",
#     "PriorTransformer"
#   ],
#   "prior_scheduler": [
#     "diffusers",
#     "UnCLIPScheduler"
#   ],
#   "text_encoder": [
#     "transformers",
#     "CLIPTextModelWithProjection"
#   ],
#   "tokenizer": [
#     "transformers",
#     "CLIPTokenizer"
#   ]
# }

# pipeline.prior_scheduler is the scheduler used for prior in UnCLIP.
print(pipeline.prior_scheduler)
# UnCLIPScheduler {
#   "_class_name": "UnCLIPScheduler",
#   "_diffusers_version": "0.12.0.dev0",
#   "clip_sample": true,
#   "clip_sample_range": 5.0,
#   "num_train_timesteps": 1000,
#   "prediction_type": "sample",
#   "variance_type": "fixed_small_log"
# }
```

`shiba-inu.jpg`

![shiba-inu](https://user-images.githubusercontent.com/16448529/209185639-6e5ec794-ce9d-4883-aa29-bd6852a2abad.jpg)

### UnCLIP Text Interpolation Pipeline

This Diffusion Pipeline takes two prompts and interpolates between the two input prompts using spherical interpolation ( slerp ). The input prompts are converted to text embeddings by the pipeline's text_encoder and the interpolation is done on the resulting text_embeddings over the number of steps specified. Defaults to 5 steps.

```python
import torch
from diffusers import DiffusionPipeline

device = torch.device("cpu" if not torch.cuda.is_available() else "cuda")

pipe = DiffusionPipeline.from_pretrained(
    "kakaobrain/karlo-v1-alpha",
    torch_dtype=torch.float16,
    custom_pipeline="unclip_text_interpolation"
)
pipe.to(device)

start_prompt = "A photograph of an adult lion"
end_prompt = "A photograph of a lion cub"
# For best results keep the prompts close in length to each other. Of course, feel free to try out with differing lengths.
generator = torch.Generator(device=device).manual_seed(42)

output = pipe(start_prompt, end_prompt, steps=6, generator=generator, enable_sequential_cpu_offload=False)

for i,image in enumerate(output.images):
    img.save('result%s.jpg' % i)
```

The resulting images in order:-

![result_0](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_0.png)
![result_1](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_1.png)
![result_2](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_2.png)
![result_3](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_3.png)
![result_4](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_4.png)
![result_5](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_5.png)

### UnCLIP Image Interpolation Pipeline

This Diffusion Pipeline takes two images or an image_embeddings tensor of size 2 and interpolates between their embeddings using spherical interpolation ( slerp ). The input images/image_embeddings are converted to image embeddings by the pipeline's image_encoder and the interpolation is done on the resulting image_embeddings over the number of steps specified. Defaults to 5 steps.

```python
import torch
from diffusers import DiffusionPipeline
from PIL import Image

device = torch.device("cpu" if not torch.cuda.is_available() else "cuda")
dtype = torch.float16 if torch.cuda.is_available() else torch.bfloat16

pipe = DiffusionPipeline.from_pretrained(
    "kakaobrain/karlo-v1-alpha-image-variations",
    torch_dtype=dtype,
    custom_pipeline="unclip_image_interpolation"
)
pipe.to(device)

images = [Image.open('./starry_night.jpg'), Image.open('./flowers.jpg')]
# For best results keep the prompts close in length to each other. Of course, feel free to try out with differing lengths.
generator = torch.Generator(device=device).manual_seed(42)

output = pipe(image=images, steps=6, generator=generator)

for i,image in enumerate(output.images):
    image.save('starry_to_flowers_%s.jpg' % i)
```

The original images:-

![starry](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_night.jpg)
![flowers](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/flowers.jpg)

The resulting images in order:-

![result0](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_0.png)
![result1](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_1.png)
![result2](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_2.png)
![result3](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_3.png)
![result4](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_4.png)
![result5](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_5.png)

### DDIM Noise Comparative Analysis Pipeline

#### **Research question: What visual concepts do the diffusion models learn from each noise level during training?**

The [P2 weighting (CVPR 2022)](https://arxiv.org/abs/2204.00227) paper proposed an approach to answer the above question, which is their second contribution.
The approach consists of the following steps:

1. The input is an image x0.
2. Perturb it to xt using a diffusion process q(xt|x0).
    - `strength` is a value between 0.0 and 1.0, that controls the amount of noise that is added to the input image. Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input.
3. Reconstruct the image with the learned denoising process pθ(ˆx0|xt).
4. Compare x0 and ˆx0 among various t to show how each step contributes to the sample.
The authors used [openai/guided-diffusion](https://github.com/openai/guided-diffusion) model to denoise images in FFHQ dataset. This pipeline extends their second contribution by investigating DDIM on any input image.

```python
import torch
from PIL import Image
import numpy as np

image_path = "path/to/your/image"  # images from CelebA-HQ might be better
image_pil = Image.open(image_path)
image_name = image_path.split("/")[-1].split(".")[0]

device = torch.device("cpu" if not torch.cuda.is_available() else "cuda")
pipe = DiffusionPipeline.from_pretrained(
    "google/ddpm-ema-celebahq-256",
    custom_pipeline="ddim_noise_comparative_analysis",
)
pipe = pipe.to(device)

for strength in np.linspace(0.1, 1, 25):
    denoised_image, latent_timestep = pipe(
        image_pil, strength=strength, return_dict=False
    )
    denoised_image = denoised_image[0]
    denoised_image.save(
        f"noise_comparative_analysis_{image_name}_{latent_timestep}.png"
    )
```

Here is the result of this pipeline (which is DDIM) on CelebA-HQ dataset.

![noise-comparative-analysis](https://user-images.githubusercontent.com/67547213/224677066-4474b2ed-56ab-4c27-87c6-de3c0255eb9c.jpeg)

### CLIP Guided Img2Img Stable Diffusion

CLIP guided Img2Img stable diffusion can help to generate more realistic images with an initial image
by guiding stable diffusion at every denoising step with an additional CLIP model.

The following code requires roughly 12GB of GPU RAM.

```python
from io import BytesIO
import requests
import torch
from diffusers import DiffusionPipeline
from PIL import Image
from transformers import CLIPImageProcessor, CLIPModel

feature_extractor = CLIPImageProcessor.from_pretrained(
    "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
)
clip_model = CLIPModel.from_pretrained(
    "laion/CLIP-ViT-B-32-laion2B-s34B-b79K", torch_dtype=torch.float16
)
guided_pipeline = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    # custom_pipeline="clip_guided_stable_diffusion",
    custom_pipeline="/home/njindal/diffusers/examples/community/clip_guided_stable_diffusion.py",
    clip_model=clip_model,
    feature_extractor=feature_extractor,
    torch_dtype=torch.float16,
)
guided_pipeline.enable_attention_slicing()
guided_pipeline = guided_pipeline.to("cuda")
prompt = "fantasy book cover, full moon, fantasy forest landscape, golden vector elements, fantasy magic, dark light night, intricate, elegant, sharp focus, illustration, highly detailed, digital painting, concept art, matte, art by WLOP and Artgerm and Albert Bierstadt, masterpiece"
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
image = guided_pipeline(
    prompt=prompt,
    num_inference_steps=30,
    image=init_image,
    strength=0.75,
    guidance_scale=7.5,
    clip_guidance_scale=100,
    num_cutouts=4,
    use_cutouts=False,
).images[0]
display(image)
```

Init Image

![img2img_init_clip_guidance](https://huggingface.co/datasets/njindal/images/resolve/main/clip_guided_img2img_init.jpg)

Output Image

![img2img_clip_guidance](https://huggingface.co/datasets/njindal/images/resolve/main/clip_guided_img2img.jpg)

### TensorRT Text2Image Stable Diffusion Pipeline

The TensorRT Pipeline can be used to accelerate the Text2Image Stable Diffusion Inference run.

NOTE: The ONNX conversions and TensorRT engine build may take up to 30 minutes.

```python
import torch
from diffusers import DDIMScheduler
from diffusers.pipelines import DiffusionPipeline

# Use the DDIMScheduler scheduler here instead
scheduler = DDIMScheduler.from_pretrained("stabilityai/stable-diffusion-2-1", subfolder="scheduler")

pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1",
    custom_pipeline="stable_diffusion_tensorrt_txt2img",
    variant='fp16',
    torch_dtype=torch.float16,
    scheduler=scheduler,)

# re-use cached folder to save ONNX models and TensorRT Engines
pipe.set_cached_folder("stabilityai/stable-diffusion-2-1", variant='fp16',)

pipe = pipe.to("cuda")

prompt = "a beautiful photograph of Mt. Fuji during cherry blossom"
image = pipe(prompt).images[0]
image.save('tensorrt_mt_fuji.png')
```

### EDICT Image Editing Pipeline

This pipeline implements the text-guided image editing approach from the paper [EDICT: Exact Diffusion Inversion via Coupled Transformations](https://arxiv.org/abs/2211.12446). You have to pass:

- (`PIL`) `image` you want to edit.
- `base_prompt`: the text prompt describing the current image (before editing).
- `target_prompt`: the text prompt describing with the edits.

```python
from diffusers import DiffusionPipeline, DDIMScheduler
from transformers import CLIPTextModel
import torch, PIL, requests
from io import BytesIO
from IPython.display import display

def center_crop_and_resize(im):

    width, height = im.size
    d = min(width, height)
    left = (width - d) / 2
    upper = (height - d) / 2
    right = (width + d) / 2
    lower = (height + d) / 2

    return im.crop((left, upper, right, lower)).resize((512, 512))

torch_dtype = torch.float16
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# scheduler and text_encoder param values as in the paper
scheduler = DDIMScheduler(
        num_train_timesteps=1000,
        beta_start=0.00085,
        beta_end=0.012,
        beta_schedule="scaled_linear",
        set_alpha_to_one=False,
        clip_sample=False,
)

text_encoder = CLIPTextModel.from_pretrained(
    pretrained_model_name_or_path="openai/clip-vit-large-patch14",
    torch_dtype=torch_dtype,
)

# initialize pipeline
pipeline = DiffusionPipeline.from_pretrained(
    pretrained_model_name_or_path="CompVis/stable-diffusion-v1-4",
    custom_pipeline="edict_pipeline",
    variant="fp16",
    scheduler=scheduler,
    text_encoder=text_encoder,
    leapfrog_steps=True,
    torch_dtype=torch_dtype,
).to(device)

# download image
image_url = "https://huggingface.co/datasets/Joqsan/images/resolve/main/imagenet_dog_1.jpeg"
response = requests.get(image_url)
image = PIL.Image.open(BytesIO(response.content))

# preprocess it
cropped_image = center_crop_and_resize(image)

# define the prompts
base_prompt = "A dog"
target_prompt = "A golden retriever"

# run the pipeline
result_image = pipeline(
      base_prompt=base_prompt,
      target_prompt=target_prompt,
      image=cropped_image,
)

display(result_image)
```

Init Image

![img2img_init_edict_text_editing](https://huggingface.co/datasets/Joqsan/images/resolve/main/imagenet_dog_1.jpeg)

Output Image

![img2img_edict_text_editing](https://huggingface.co/datasets/Joqsan/images/resolve/main/imagenet_dog_1_cropped_generated.png)

### Stable Diffusion RePaint

This pipeline uses the [RePaint](https://arxiv.org/abs/2201.09865) logic on the latent space of stable diffusion. It can
be used similarly to other image inpainting pipelines but does not rely on a specific inpainting model. This means you can use
models that are not specifically created for inpainting.

Make sure to use the ```RePaintScheduler``` as shown in the example below.

Disclaimer: The mask gets transferred into latent space, this may lead to unexpected changes on the edge of the masked part.
The inference time is a lot slower.

```py
import PIL
import requests
import torch
from io import BytesIO
from diffusers import StableDiffusionPipeline, RePaintScheduler

def download_image(url):
    response = requests.get(url)
    return PIL.Image.open(BytesIO(response.content)).convert("RGB")
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))
mask_image = PIL.ImageOps.invert(mask_image)
pipe = StableDiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16, custom_pipeline="stable_diffusion_repaint",
)
pipe.scheduler = RePaintScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
```

### TensorRT Image2Image Stable Diffusion Pipeline

The TensorRT Pipeline can be used to accelerate the Image2Image Stable Diffusion Inference run.

NOTE: The ONNX conversions and TensorRT engine build may take up to 30 minutes.

```python
import requests
from io import BytesIO
from PIL import Image
import torch
from diffusers import DDIMScheduler
from diffusers import DiffusionPipeline

# Use the DDIMScheduler scheduler here instead
scheduler = DDIMScheduler.from_pretrained("stabilityai/stable-diffusion-2-1",
                                            subfolder="scheduler")

pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1",
                                            custom_pipeline="stable_diffusion_tensorrt_img2img",
                                            variant='fp16',
                                            torch_dtype=torch.float16,
                                            scheduler=scheduler,)

# re-use cached folder to save ONNX models and TensorRT Engines
pipe.set_cached_folder("stabilityai/stable-diffusion-2-1", variant='fp16',)

pipe = pipe.to("cuda")

url = "https://pajoca.com/wp-content/uploads/2022/09/tekito-yamakawa-1.png"
response = requests.get(url)
input_image = Image.open(BytesIO(response.content)).convert("RGB")
prompt = "photorealistic new zealand hills"
image = pipe(prompt, image=input_image, strength=0.75,).images[0]
image.save('tensorrt_img2img_new_zealand_hills.png')
```

### Stable Diffusion BoxDiff
BoxDiff is a training-free method for controlled generation with bounding box coordinates. It should work with any Stable Diffusion model. Below shows an example with `stable-diffusion-2-1-base`.
```py
import torch
from PIL import Image, ImageDraw
from copy import deepcopy

from examples.community.pipeline_stable_diffusion_boxdiff import StableDiffusionBoxDiffPipeline

def draw_box_with_text(img, boxes, names):
    colors = ["red", "olive", "blue", "green", "orange", "brown", "cyan", "purple"]
    img_new = deepcopy(img)
    draw = ImageDraw.Draw(img_new)

    W, H = img.size
    for bid, box in enumerate(boxes):
        draw.rectangle([box[0] * W, box[1] * H, box[2] * W, box[3] * H], outline=colors[bid % len(colors)], width=4)
        draw.text((box[0] * W, box[1] * H), names[bid], fill=colors[bid % len(colors)])
    return img_new

pipe = StableDiffusionBoxDiffPipeline.from_pretrained(
    "stabilityai/stable-diffusion-2-1-base",
    torch_dtype=torch.float16,
)
pipe.to("cuda")

# example 1
prompt = "as the aurora lights up the sky, a herd of reindeer leisurely wanders on the grassy meadow, admiring the breathtaking view, a serene lake quietly reflects the magnificent display, and in the distance, a snow-capped mountain stands majestically, fantasy, 8k, highly detailed"
phrases = [
    "aurora",
    "reindeer",
    "meadow",
    "lake",
    "mountain"
]
boxes = [[1,3,512,202], [75,344,421,495], [1,327,508,507], [2,217,507,341], [1,135,509,242]]

# example 2
# prompt = "A rabbit wearing sunglasses looks very proud"
# phrases = ["rabbit", "sunglasses"]
# boxes = [[67,87,366,512], [66,130,364,262]]

boxes = [[x / 512 for x in box] for box in boxes]

images = pipe(
    prompt,
    boxdiff_phrases=phrases,
    boxdiff_boxes=boxes,
    boxdiff_kwargs={
        "attention_res": 16,
        "normalize_eot": True
    },
    num_inference_steps=50,
    guidance_scale=7.5,
    generator=torch.manual_seed(42),
    safety_checker=None
).images

draw_box_with_text(images[0], boxes, phrases).save("output.png")
```


### Stable Diffusion Reference

This pipeline uses the Reference Control. Refer to the [sd-webui-controlnet discussion: Reference-only Control](https://github.com/Mikubill/sd-webui-controlnet/discussions/1236)[sd-webui-controlnet discussion: Reference-adain Control](https://github.com/Mikubill/sd-webui-controlnet/discussions/1280).

Based on [this issue](https://github.com/huggingface/diffusers/issues/3566),

- `EulerAncestralDiscreteScheduler` got poor results.

```py
import torch
from diffusers import UniPCMultistepScheduler
from diffusers.utils import load_image

input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png")

pipe = StableDiffusionReferencePipeline.from_pretrained(
       "stable-diffusion-v1-5/stable-diffusion-v1-5",
       safety_checker=None,
       torch_dtype=torch.float16
       ).to('cuda:0')

pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

result_img = pipe(ref_image=input_image,
      prompt="1girl",
      num_inference_steps=20,
      reference_attn=True,
      reference_adain=True).images[0]
```

Reference Image

![reference_image](https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png)

Output Image of `reference_attn=True` and `reference_adain=False`

![output_image](https://github.com/huggingface/diffusers/assets/24734142/813b5c6a-6d89-46ba-b7a4-2624e240eea5)

Output Image of `reference_attn=False` and `reference_adain=True`

![output_image](https://github.com/huggingface/diffusers/assets/24734142/ffc90339-9ef0-4c4d-a544-135c3e5644da)

Output Image of `reference_attn=True` and `reference_adain=True`

![output_image](https://github.com/huggingface/diffusers/assets/24734142/3c5255d6-867d-4d35-b202-8dfd30cc6827)

### Stable Diffusion ControlNet Reference

This pipeline uses the Reference Control with ControlNet. Refer to the [sd-webui-controlnet discussion: Reference-only Control](https://github.com/Mikubill/sd-webui-controlnet/discussions/1236)[sd-webui-controlnet discussion: Reference-adain Control](https://github.com/Mikubill/sd-webui-controlnet/discussions/1280).

Based on [this issue](https://github.com/huggingface/diffusers/issues/3566),

- `EulerAncestralDiscreteScheduler` got poor results.
- `guess_mode=True` works well for ControlNet v1.1

```py
import cv2
import torch
import numpy as np
from PIL import Image
from diffusers import UniPCMultistepScheduler
from diffusers.utils import load_image

input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png")

# get canny image
image = cv2.Canny(np.array(input_image), 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)

controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
pipe = StableDiffusionControlNetReferencePipeline.from_pretrained(
       "stable-diffusion-v1-5/stable-diffusion-v1-5",
       controlnet=controlnet,
       safety_checker=None,
       torch_dtype=torch.float16
       ).to('cuda:0')

pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

result_img = pipe(ref_image=input_image,
      prompt="1girl",
      image=canny_image,
      num_inference_steps=20,
      reference_attn=True,
      reference_adain=True).images[0]
```

Reference Image

![reference_image](https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png)

Output Image

![output_image](https://github.com/huggingface/diffusers/assets/24734142/7b9a5830-f173-4b92-b0cf-73d0e9c01d60)

### Stable Diffusion on IPEX

This diffusion pipeline aims to accelerate the inference of Stable-Diffusion on Intel Xeon CPUs with BF16/FP32 precision using [IPEX](https://github.com/intel/intel-extension-for-pytorch).

To use this pipeline, you need to:

1. Install [IPEX](https://github.com/intel/intel-extension-for-pytorch)

**Note:** For each PyTorch release, there is a corresponding release of the IPEX. Here is the mapping relationship. It is recommended to install PyTorch/IPEX2.0 to get the best performance.

|PyTorch Version|IPEX Version|
|--|--|
|[v2.0.\*](https://github.com/pytorch/pytorch/tree/v2.0.1 "v2.0.1")|[v2.0.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v2.0.100+cpu)|
|[v1.13.\*](https://github.com/pytorch/pytorch/tree/v1.13.0 "v1.13.0")|[v1.13.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v1.13.100+cpu)|

You can simply use pip to install IPEX with the latest version.

```sh
python -m pip install intel_extension_for_pytorch
```

**Note:** To install a specific version, run with the following command:

```sh
python -m pip install intel_extension_for_pytorch==<version_name> -f https://developer.intel.com/ipex-whl-stable-cpu
```

2. After pipeline initialization, `prepare_for_ipex()` should be called to enable IPEX acceleration. Supported inference datatypes are Float32 and BFloat16.

**Note:** The setting of generated image height/width for `prepare_for_ipex()` should be same as the setting of pipeline inference.

```python
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", custom_pipeline="stable_diffusion_ipex")
# For Float32
pipe.prepare_for_ipex(prompt, dtype=torch.float32, height=512, width=512) # value of image height/width should be consistent with the pipeline inference
# For BFloat16
pipe.prepare_for_ipex(prompt, dtype=torch.bfloat16, height=512, width=512) # value of image height/width should be consistent with the pipeline inference
```

Then you can use the ipex pipeline in a similar way to the default stable diffusion pipeline.

```python
# For Float32
image = pipe(prompt, num_inference_steps=20, height=512, width=512).images[0] # value of image height/width should be consistent with 'prepare_for_ipex()'
# For BFloat16
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16):
    image = pipe(prompt, num_inference_steps=20, height=512, width=512).images[0] # value of image height/width should be consistent with 'prepare_for_ipex()'
```

The following code compares the performance of the original stable diffusion pipeline with the ipex-optimized pipeline.

```python
import torch
import intel_extension_for_pytorch as ipex
from diffusers import StableDiffusionPipeline
import time

prompt = "sailing ship in storm by Rembrandt"
model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
# Helper function for time evaluation
def elapsed_time(pipeline, nb_pass=3, num_inference_steps=20):
    # warmup
    for _ in range(2):
        images = pipeline(prompt, num_inference_steps=num_inference_steps, height=512, width=512).images
    # time evaluation
    start = time.time()
    for _ in range(nb_pass):
        pipeline(prompt, num_inference_steps=num_inference_steps, height=512, width=512)
    end = time.time()
    return (end - start) / nb_pass

##############     bf16 inference performance    ###############

# 1. IPEX Pipeline initialization
pipe = DiffusionPipeline.from_pretrained(model_id, custom_pipeline="stable_diffusion_ipex")
pipe.prepare_for_ipex(prompt, dtype=torch.bfloat16, height=512, width=512)

# 2. Original Pipeline initialization
pipe2 = StableDiffusionPipeline.from_pretrained(model_id)

# 3. Compare performance between Original Pipeline and IPEX Pipeline
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16):
    latency = elapsed_time(pipe)
    print("Latency of StableDiffusionIPEXPipeline--bf16", latency)
    latency = elapsed_time(pipe2)
    print("Latency of StableDiffusionPipeline--bf16", latency)

##############     fp32 inference performance    ###############

# 1. IPEX Pipeline initialization
pipe3 = DiffusionPipeline.from_pretrained(model_id, custom_pipeline="stable_diffusion_ipex")
pipe3.prepare_for_ipex(prompt, dtype=torch.float32, height=512, width=512)

# 2. Original Pipeline initialization
pipe4 = StableDiffusionPipeline.from_pretrained(model_id)

# 3. Compare performance between Original Pipeline and IPEX Pipeline
latency = elapsed_time(pipe3)
print("Latency of StableDiffusionIPEXPipeline--fp32", latency)
latency = elapsed_time(pipe4)
print("Latency of StableDiffusionPipeline--fp32", latency)
```

### Stable Diffusion XL on IPEX

This diffusion pipeline aims to accelerate the inference of Stable-Diffusion XL on Intel Xeon CPUs with BF16/FP32 precision using [IPEX](https://github.com/intel/intel-extension-for-pytorch).

To use this pipeline, you need to:

1. Install [IPEX](https://github.com/intel/intel-extension-for-pytorch)

**Note:** For each PyTorch release, there is a corresponding release of IPEX. Here is the mapping relationship. It is recommended to install Pytorch/IPEX2.0 to get the best performance.

|PyTorch Version|IPEX Version|
|--|--|
|[v2.0.\*](https://github.com/pytorch/pytorch/tree/v2.0.1 "v2.0.1")|[v2.0.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v2.0.100+cpu)|
|[v1.13.\*](https://github.com/pytorch/pytorch/tree/v1.13.0 "v1.13.0")|[v1.13.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v1.13.100+cpu)|

You can simply use pip to install IPEX with the latest version.

```sh
python -m pip install intel_extension_for_pytorch
```

**Note:** To install a specific version, run with the following command:

```sh
python -m pip install intel_extension_for_pytorch==<version_name> -f https://developer.intel.com/ipex-whl-stable-cpu
```

2. After pipeline initialization, `prepare_for_ipex()` should be called to enable IPEX acceleration. Supported inference datatypes are Float32 and BFloat16.

**Note:** The values of `height` and `width` used during preparation with `prepare_for_ipex()` should be the same when running inference with the prepared pipeline.

```python
pipe = StableDiffusionXLPipelineIpex.from_pretrained("stabilityai/sdxl-turbo", low_cpu_mem_usage=True, use_safetensors=True)
# value of image height/width should be consistent with the pipeline inference
# For Float32
pipe.prepare_for_ipex(torch.float32, prompt, height=512, width=512)
# For BFloat16
pipe.prepare_for_ipex(torch.bfloat16, prompt, height=512, width=512)
```

Then you can use the ipex pipeline in a similar way to the default stable diffusion xl pipeline.

```python
# value of image height/width should be consistent with 'prepare_for_ipex()'
# For Float32
image = pipe(prompt, num_inference_steps=num_inference_steps, height=512, width=512, guidance_scale=guidance_scale).images[0]
# For BFloat16
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16):
    image = pipe(prompt, num_inference_steps=num_inference_steps, height=512, width=512, guidance_scale=guidance_scale).images[0]
```

The following code compares the performance of the original stable diffusion xl pipeline with the ipex-optimized pipeline.
By using this optimized pipeline, we can get about 1.4-2 times performance boost with BFloat16 on fourth generation of Intel Xeon CPUs,
code-named Sapphire Rapids.

```python
import torch
from diffusers import StableDiffusionXLPipeline
from pipeline_stable_diffusion_xl_ipex import StableDiffusionXLPipelineIpex
import time

prompt = "sailing ship in storm by Rembrandt"
model_id = "stabilityai/sdxl-turbo"
steps = 4

# Helper function for time evaluation
def elapsed_time(pipeline, nb_pass=3, num_inference_steps=1):
    # warmup
    for _ in range(2):
        images = pipeline(prompt, num_inference_steps=num_inference_steps, height=512, width=512, guidance_scale=0.0).images
    # time evaluation
    start = time.time()
    for _ in range(nb_pass):
        pipeline(prompt, num_inference_steps=num_inference_steps, height=512, width=512, guidance_scale=0.0)
    end = time.time()
    return (end - start) / nb_pass

##############     bf16 inference performance    ###############

# 1. IPEX Pipeline initialization
pipe = StableDiffusionXLPipelineIpex.from_pretrained(model_id, low_cpu_mem_usage=True, use_safetensors=True)
pipe.prepare_for_ipex(torch.bfloat16, prompt, height=512, width=512)

# 2. Original Pipeline initialization
pipe2 = StableDiffusionXLPipeline.from_pretrained(model_id, low_cpu_mem_usage=True, use_safetensors=True)

# 3. Compare performance between Original Pipeline and IPEX Pipeline
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16):
    latency = elapsed_time(pipe, num_inference_steps=steps)
    print("Latency of StableDiffusionXLPipelineIpex--bf16", latency, "s for total", steps, "steps")
    latency = elapsed_time(pipe2, num_inference_steps=steps)
    print("Latency of StableDiffusionXLPipeline--bf16", latency, "s for total", steps, "steps")

##############     fp32 inference performance    ###############

# 1. IPEX Pipeline initialization
pipe3 = StableDiffusionXLPipelineIpex.from_pretrained(model_id, low_cpu_mem_usage=True, use_safetensors=True)
pipe3.prepare_for_ipex(torch.float32, prompt, height=512, width=512)

# 2. Original Pipeline initialization
pipe4 = StableDiffusionXLPipeline.from_pretrained(model_id, low_cpu_mem_usage=True, use_safetensors=True)

# 3. Compare performance between Original Pipeline and IPEX Pipeline
latency = elapsed_time(pipe3, num_inference_steps=steps)
print("Latency of StableDiffusionXLPipelineIpex--fp32", latency, "s for total", steps, "steps")
latency = elapsed_time(pipe4, num_inference_steps=steps)
print("Latency of StableDiffusionXLPipeline--fp32", latency, "s for total", steps, "steps")
```

### CLIP Guided Images Mixing With Stable Diffusion

![clip_guided_images_mixing_examples](https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/main.png)

CLIP guided stable diffusion images mixing pipeline allows to combine two images using standard diffusion models.
This approach is using (optional) CoCa model to avoid writing image description.
[More code examples](https://github.com/TheDenk/images_mixing)

### Stable Diffusion XL Long Weighted Prompt Pipeline

This SDXL pipeline supports unlimited length prompt and negative prompt, compatible with A1111 prompt weighted style.

You can provide both `prompt` and `prompt_2`. If only one prompt is provided, `prompt_2` will be a copy of the provided `prompt`. Here is a sample code to use this pipeline.

```python
from diffusers import DiffusionPipeline
from diffusers.utils import load_image
import torch

pipe = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0"
    , torch_dtype       = torch.float16
    , use_safetensors   = True
    , variant           = "fp16"
    , custom_pipeline   = "lpw_stable_diffusion_xl",
)

prompt = "photo of a cute (white) cat running on the grass" * 20
prompt2 = "chasing (birds:1.5)" * 20
prompt = f"{prompt},{prompt2}"
neg_prompt = "blur, low quality, carton, animate"

pipe.to("cuda")

# text2img
t2i_images = pipe(
    prompt=prompt,
    negative_prompt=neg_prompt,
).images  # alternatively, you can call the .text2img() function

# img2img
input_image = load_image("/path/to/local/image.png")  # or URL to your input image
i2i_images = pipe.img2img(
  prompt=prompt,
  negative_prompt=neg_prompt,
  image=input_image,
  strength=0.8,  # higher strength will result in more variation compared to original image
).images

# inpaint
input_mask = load_image("/path/to/local/mask.png")  # or URL to your input inpainting mask
inpaint_images = pipe.inpaint(
  prompt="photo of a cute (black) cat running on the grass" * 20,
  negative_prompt=neg_prompt,
  image=input_image,
  mask=input_mask,
  strength=0.6,  # higher strength will result in more variation compared to original image
).images

pipe.to("cpu")
torch.cuda.empty_cache()

from IPython.display import display  # assuming you are using this code in a notebook
display(t2i_images[0])
display(i2i_images[0])
display(inpaint_images[0])
```

In the above code, the `prompt2` is appended to the `prompt`, which is more than 77 tokens. "birds" are showing up in the result.
![Stable Diffusion XL Long Weighted Prompt Pipeline sample](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_long_weighted_prompt.png)

For more results, checkout [PR #6114](https://github.com/huggingface/diffusers/pull/6114).

### Example Images Mixing (with CoCa)

```python
import requests
from io import BytesIO

import PIL
import torch
import open_clip
from open_clip import SimpleTokenizer
from diffusers import DiffusionPipeline
from transformers import CLIPImageProcessor, CLIPModel


def download_image(url):
    response = requests.get(url)
    return PIL.Image.open(BytesIO(response.content)).convert("RGB")

# Loading additional models
feature_extractor = CLIPImageProcessor.from_pretrained(
    "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
)
clip_model = CLIPModel.from_pretrained(
    "laion/CLIP-ViT-B-32-laion2B-s34B-b79K", torch_dtype=torch.float16
)
coca_model = open_clip.create_model('coca_ViT-L-14', pretrained='laion2B-s13B-b90k').to('cuda')
coca_model.dtype = torch.float16
coca_transform = open_clip.image_transform(
    coca_model.visual.image_size,
    is_train=False,
    mean=getattr(coca_model.visual, 'image_mean', None),
    std=getattr(coca_model.visual, 'image_std', None),
)
coca_tokenizer = SimpleTokenizer()

# Pipeline creating
mixing_pipeline = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="clip_guided_images_mixing_stable_diffusion",
    clip_model=clip_model,
    feature_extractor=feature_extractor,
    coca_model=coca_model,
    coca_tokenizer=coca_tokenizer,
    coca_transform=coca_transform,
    torch_dtype=torch.float16,
)
mixing_pipeline.enable_attention_slicing()
mixing_pipeline = mixing_pipeline.to("cuda")

# Pipeline running
generator = torch.Generator(device="cuda").manual_seed(17)

def download_image(url):
    response = requests.get(url)
    return PIL.Image.open(BytesIO(response.content)).convert("RGB")

content_image = download_image("https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/boromir.jpg")
style_image = download_image("https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/gigachad.jpg")

pipe_images = mixing_pipeline(
    num_inference_steps=50,
    content_image=content_image,
    style_image=style_image,
    noise_strength=0.65,
    slerp_latent_style_strength=0.9,
    slerp_prompt_style_strength=0.1,
    slerp_clip_image_style_strength=0.1,
    guidance_scale=9.0,
    batch_size=1,
    clip_guidance_scale=100,
    generator=generator,
).images
```

![image_mixing_result](https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/boromir_gigachad.png)

### Stable Diffusion Mixture Tiling

This pipeline uses the Mixture. Refer to the [Mixture](https://arxiv.org/abs/2302.02412) paper for more details.

```python
from diffusers import LMSDiscreteScheduler, DiffusionPipeline

# Create scheduler and model (similar to StableDiffusionPipeline)
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
pipeline = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", scheduler=scheduler, custom_pipeline="mixture_tiling")
pipeline.to("cuda")

# Mixture of Diffusers generation
image = pipeline(
    prompt=[[
        "A charming house in the countryside, by jakub rozalski, sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece",
        "A dirt road in the countryside crossing pastures, by jakub rozalski, sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece",
        "An old and rusty giant robot lying on a dirt road, by jakub rozalski, dark sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece"
    ]],
    tile_height=640,
    tile_width=640,
    tile_row_overlap=0,
    tile_col_overlap=256,
    guidance_scale=8,
    seed=7178915308,
    num_inference_steps=50,
)["images"][0]
```

![mixture_tiling_results](https://huggingface.co/datasets/kadirnar/diffusers_readme_images/resolve/main/mixture_tiling.png)

### TensorRT Inpainting Stable Diffusion Pipeline

The TensorRT Pipeline can be used to accelerate the Inpainting Stable Diffusion Inference run.

NOTE: The ONNX conversions and TensorRT engine build may take up to 30 minutes.

```python
import requests
from io import BytesIO
from PIL import Image
import torch
from diffusers import PNDMScheduler
from diffusers.pipelines import DiffusionPipeline

# Use the PNDMScheduler scheduler here instead
scheduler = PNDMScheduler.from_pretrained("stabilityai/stable-diffusion-2-inpainting", subfolder="scheduler")

pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-inpainting",
    custom_pipeline="stable_diffusion_tensorrt_inpaint",
    variant='fp16',
    torch_dtype=torch.float16,
    scheduler=scheduler,
    )

# re-use cached folder to save ONNX models and TensorRT Engines
pipe.set_cached_folder("stabilityai/stable-diffusion-2-inpainting", variant='fp16',)

pipe = pipe.to("cuda")

url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
response = requests.get(url)
input_image = Image.open(BytesIO(response.content)).convert("RGB")

mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
response = requests.get(mask_url)
mask_image = Image.open(BytesIO(response.content)).convert("RGB")

prompt = "a mecha robot sitting on a bench"
image = pipe(prompt, image=input_image, mask_image=mask_image, strength=0.75,).images[0]
image.save('tensorrt_inpaint_mecha_robot.png')
```

### Stable Diffusion Mixture Canvas

This pipeline uses the Mixture. Refer to the [Mixture](https://arxiv.org/abs/2302.02412) paper for more details.

```python
from PIL import Image
from diffusers import LMSDiscreteScheduler, DiffusionPipeline
from diffusers.pipelines.pipeline_utils import Image2ImageRegion, Text2ImageRegion, preprocess_image


# Load and preprocess guide image
iic_image = preprocess_image(Image.open("input_image.png").convert("RGB"))

# Create scheduler and model (similar to StableDiffusionPipeline)
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
pipeline = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", scheduler=scheduler).to("cuda:0", custom_pipeline="mixture_canvas")
pipeline.to("cuda")

# Mixture of Diffusers generation
output = pipeline(
    canvas_height=800,
    canvas_width=352,
    regions=[
        Text2ImageRegion(0, 800, 0, 352, guidance_scale=8,
            prompt=f"best quality, masterpiece, WLOP, sakimichan, art contest winner on pixiv, 8K, intricate details, wet effects, rain drops, ethereal, mysterious, futuristic, UHD, HDR, cinematic lighting, in a beautiful forest, rainy day, award winning, trending on artstation, beautiful confident cheerful young woman, wearing a futuristic sleeveless dress, ultra beautiful detailed  eyes, hyper-detailed face, complex,  perfect, model,  textured,  chiaroscuro, professional make-up, realistic, figure in frame, "),
        Image2ImageRegion(352-800, 352, 0, 352, reference_image=iic_image, strength=1.0),
    ],
    num_inference_steps=100,
    seed=5525475061,
)["images"][0]
```

![Input_Image](https://huggingface.co/datasets/kadirnar/diffusers_readme_images/resolve/main/input_image.png)
![mixture_canvas_results](https://huggingface.co/datasets/kadirnar/diffusers_readme_images/resolve/main/canvas.png)

### IADB pipeline

This pipeline is the implementation of the [α-(de)Blending: a Minimalist Deterministic Diffusion Model](https://arxiv.org/abs/2305.03486) paper.
It is a simple and minimalist diffusion model.

The following code shows how to use the IADB pipeline to generate images using a pretrained celebahq-256 model.

```python
pipeline_iadb = DiffusionPipeline.from_pretrained("thomasc4/iadb-celebahq-256", custom_pipeline='iadb')

pipeline_iadb = pipeline_iadb.to('cuda')

output = pipeline_iadb(batch_size=4, num_inference_steps=128)
for i in range(len(output[0])):
    plt.imshow(output[0][i])
    plt.show()
```

Sampling with the IADB formulation is easy, and can be done in a few lines (the pipeline already implements it):

```python
def sample_iadb(model, x0, nb_step):
    x_alpha = x0
    for t in range(nb_step):
        alpha = (t/nb_step)
        alpha_next =((t+1)/nb_step)

        d = model(x_alpha, torch.tensor(alpha, device=x_alpha.device))['sample']
        x_alpha = x_alpha + (alpha_next-alpha)*d

    return x_alpha
```

The training loop is also straightforward:

```python
# Training loop
while True:
    x0 = sample_noise()
    x1 = sample_dataset()

    alpha = torch.rand(batch_size)

    # Blend
    x_alpha = (1-alpha) * x0 + alpha * x1

    # Loss
    loss = torch.sum((D(x_alpha, alpha)- (x1-x0))**2)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
```

### Zero1to3 pipeline

This pipeline is the implementation of the [Zero-1-to-3: Zero-shot One Image to 3D Object](https://arxiv.org/abs/2303.11328) paper.
The original pytorch-lightning [repo](https://github.com/cvlab-columbia/zero123) and a diffusers [repo](https://github.com/kxhit/zero123-hf).

The following code shows how to use the Zero1to3 pipeline to generate novel view synthesis images using a pretrained stable diffusion model.

```python
import os
import torch
from pipeline_zero1to3 import Zero1to3StableDiffusionPipeline
from diffusers.utils import load_image

model_id = "kxic/zero123-165000"  # zero123-105000, zero123-165000, zero123-xl

pipe = Zero1to3StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)

pipe.enable_xformers_memory_efficient_attention()
pipe.enable_vae_tiling()
pipe.enable_attention_slicing()
pipe = pipe.to("cuda")

num_images_per_prompt = 4

# test inference pipeline
# x y z, Polar angle (vertical rotation in degrees)  Azimuth angle (horizontal rotation in degrees)  Zoom (relative distance from center)
query_pose1 = [-75.0, 100.0, 0.0]
query_pose2 = [-20.0, 125.0, 0.0]
query_pose3 = [-55.0, 90.0, 0.0]

# load image
# H, W = (256, 256) # H, W = (512, 512)   # zero123 training is 256,256

# for batch input
input_image1 = load_image("./demo/4_blackarm.png")  # load_image("https://cvlab-zero123-live.hf.space/file=/home/user/app/configs/4_blackarm.png")
input_image2 = load_image("./demo/8_motor.png")  # load_image("https://cvlab-zero123-live.hf.space/file=/home/user/app/configs/8_motor.png")
input_image3 = load_image("./demo/7_london.png")  # load_image("https://cvlab-zero123-live.hf.space/file=/home/user/app/configs/7_london.png")
input_images = [input_image1, input_image2, input_image3]
query_poses = [query_pose1, query_pose2, query_pose3]

# # for single input
# H, W = (256, 256)
# input_images = [input_image2.resize((H, W), PIL.Image.NEAREST)]
# query_poses = [query_pose2]


# better do preprocessing
from gradio_new import preprocess_image, create_carvekit_interface
import numpy as np
import PIL.Image as Image

pre_images = []
models = dict()
print('Instantiating Carvekit HiInterface...')
models['carvekit'] = create_carvekit_interface()
if not isinstance(input_images, list):
    input_images = [input_images]
for raw_im in input_images:
    input_im = preprocess_image(models, raw_im, True)
    H, W = input_im.shape[:2]
    pre_images.append(Image.fromarray((input_im * 255.0).astype(np.uint8)))
input_images = pre_images

# infer pipeline, in original zero123 num_inference_steps=76
images = pipe(input_imgs=input_images, prompt_imgs=input_images, poses=query_poses, height=H, width=W,
              guidance_scale=3.0, num_images_per_prompt=num_images_per_prompt, num_inference_steps=50).images

# save imgs
log_dir = "logs"
os.makedirs(log_dir, exist_ok=True)
bs = len(input_images)
i = 0
for obj in range(bs):
    for idx in range(num_images_per_prompt):
        images[i].save(os.path.join(log_dir,f"obj{obj}_{idx}.jpg"))
        i += 1
```

### Stable Diffusion XL Reference

This pipeline uses the Reference. Refer to the [stable_diffusion_reference](https://github.com/huggingface/diffusers/blob/main/examples/community/README.md#stable-diffusion-reference).

```py
import torch
from PIL import Image
from diffusers.utils import load_image
from diffusers import DiffusionPipeline
from diffusers.schedulers import UniPCMultistepScheduler

input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png")

# pipe = DiffusionPipeline.from_pretrained(
#     "stabilityai/stable-diffusion-xl-base-1.0",
#     custom_pipeline="stable_diffusion_xl_reference",
#     torch_dtype=torch.float16,
#     use_safetensors=True,
#     variant="fp16").to('cuda:0')

pipe = StableDiffusionXLReferencePipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    torch_dtype=torch.float16,
    use_safetensors=True,
    variant="fp16").to('cuda:0')

pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

result_img = pipe(ref_image=input_image,
      prompt="1girl",
      num_inference_steps=20,
      reference_attn=True,
      reference_adain=True).images[0]
```

Reference Image

![reference_image](https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png)

Output Image

`prompt: 1 girl`

`reference_attn=True, reference_adain=True, num_inference_steps=20`
![Output_image](https://github.com/zideliu/diffusers/assets/34944964/743848da-a215-48f9-ae39-b5e2ae49fb13)

Reference Image
![reference_image](https://github.com/huggingface/diffusers/assets/34944964/449bdab6-e744-4fb2-9620-d4068d9a741b)

Output Image

`prompt: A dog`

`reference_attn=True, reference_adain=False, num_inference_steps=20`
![Output_image](https://github.com/huggingface/diffusers/assets/34944964/fff2f16f-6e91-434b-abcc-5259d866c31e)

Reference Image
![reference_image](https://github.com/huggingface/diffusers/assets/34944964/077ed4fe-2991-4b79-99a1-009f056227d1)

Output Image

`prompt: An astronaut riding a lion`

`reference_attn=True, reference_adain=True, num_inference_steps=20`
![output_image](https://github.com/huggingface/diffusers/assets/34944964/9b2f1aca-886f-49c3-89ec-d2031c8e3670)

### Stable diffusion fabric pipeline

FABRIC approach applicable to a wide range of popular diffusion models, which exploits
the self-attention layer present in the most widely used architectures to condition
the diffusion process on a set of feedback images.

```python
import requests
import torch
from PIL import Image
from io import BytesIO

from diffusers import DiffusionPipeline

# load the pipeline
# make sure you're logged in with `huggingface-cli login`
model_id_or_path = "stable-diffusion-v1-5/stable-diffusion-v1-5"
# can also be used with dreamlike-art/dreamlike-photoreal-2.0
pipe = DiffusionPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16, custom_pipeline="pipeline_fabric").to("cuda")

# let's specify a prompt
prompt = "An astronaut riding an elephant"
negative_prompt = "lowres, cropped"

# call the pipeline
image = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    num_inference_steps=20,
    generator=torch.manual_seed(12)
).images[0]

image.save("horse_to_elephant.jpg")

# let's try another example with feedback
url = "https://raw.githubusercontent.com/ChenWu98/cycle-diffusion/main/data/dalle2/A%20black%20colored%20car.png"
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")

prompt = "photo, A blue colored car, fish eye"
liked = [init_image]
## same goes with disliked

# call the pipeline
torch.manual_seed(0)
image = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    liked=liked,
    num_inference_steps=20,
).images[0]

image.save("black_to_blue.png")
```

*With enough feedbacks you can create very similar high quality images.*

The original codebase can be found at [sd-fabric/fabric](https://github.com/sd-fabric/fabric), and available checkpoints are [dreamlike-art/dreamlike-photoreal-2.0](https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0), [stable-diffusion-v1-5/stable-diffusion-v1-5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5), and [stabilityai/stable-diffusion-2-1](https://huggingface.co/stabilityai/stable-diffusion-2-1) (may give unexpected results).

Let's have a look at the images (_512X512_)

| Without Feedback            | With Feedback  (1st image)          |
|---------------------|---------------------|
| ![Image 1](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/fabric_wo_feedback.jpg) | ![Feedback Image 1](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/fabric_w_feedback.png) |

### Masked Im2Im Stable Diffusion Pipeline

This pipeline reimplements sketch inpaint feature from A1111 for non-inpaint models. The following code reads two images, original and one with mask painted over it. It computes mask as a difference of two images and does the inpainting in the area defined by the mask.

```python
img = PIL.Image.open("./mech.png")
# read image with mask painted over
img_paint = PIL.Image.open("./mech_painted.png")
neq = numpy.any(numpy.array(img) != numpy.array(img_paint), axis=-1)
mask = neq / neq.max()

pipeline = MaskedStableDiffusionImg2ImgPipeline.from_pretrained("frankjoshua/icbinpICantBelieveIts_v8")

# works best with EulerAncestralDiscreteScheduler
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(pipeline.scheduler.config)
generator = torch.Generator(device="cpu").manual_seed(4)

prompt = "a man wearing a mask"
result = pipeline(prompt=prompt, image=img_paint, mask=mask, strength=0.75,
                  generator=generator)
result.images[0].save("result.png")
```

original image mech.png

<img src=https://github.com/noskill/diffusers/assets/733626/10ad972d-d655-43cb-8de1-039e3d79e849 width="25%" >

image with mask mech_painted.png

<img src=https://github.com/noskill/diffusers/assets/733626/c334466a-67fe-4377-9ff7-f46021b9c224 width="25%" >

result:

<img src=https://github.com/noskill/diffusers/assets/733626/23a0a71d-51db-471e-926a-107ac62512a8 width="25%" >

### Masked Im2Im Stable Diffusion Pipeline XL

This pipeline implements sketch inpaint feature from A1111 for non-inpaint models. The following code reads two images, original and one with mask painted over it. It computes mask as a difference of two images and does the inpainting in the area defined by the mask. Latent code is initialized from the image with the mask by default so the color of the mask affects the result.

```
img = PIL.Image.open("./mech.png")
# read image with mask painted over
img_paint = PIL.Image.open("./mech_painted.png")

pipeline = MaskedStableDiffusionXLImg2ImgPipeline.from_pretrained("frankjoshua/juggernautXL_v8Rundiffusion", dtype=torch.float16)

pipeline.to('cuda')
pipeline.enable_xformers_memory_efficient_attention()

prompt = "a mech warrior wearing a mask"
seed = 8348273636437
for i in range(10):
    generator = torch.Generator(device="cuda").manual_seed(seed + i)
    print(seed + i)
    result = pipeline(prompt=prompt, blur=48, image=img_paint, original_image=img, strength=0.9,
                          generator=generator, num_inference_steps=60, num_images_per_prompt=1)
    im = result.images[0]
    im.save(f"result{i}.png")
```

original image mech.png

<img src=https://github.com/noskill/diffusers/assets/733626/10ad972d-d655-43cb-8de1-039e3d79e849 width="25%" >

image with mask mech_painted.png

<img src=https://github.com/noskill/diffusers/assets/733626/c334466a-67fe-4377-9ff7-f46021b9c224 width="25%" >

result: 

<img src=https://github.com/noskill/diffusers/assets/733626/5043fb57-a785-4606-a5ba-a36704f7cb42 width="25%" >

### Prompt2Prompt Pipeline

Prompt2Prompt allows the following edits:

- ReplaceEdit (change words in prompt)
- ReplaceEdit with local blend (change words in prompt, keep image part unrelated to changes constant)
- RefineEdit (add words to prompt)
- RefineEdit with local blend (add words to prompt, keep image part unrelated to changes constant)
- ReweightEdit (modulate importance of words)

Here's a full example for `ReplaceEdit``:

```python
import torch
import numpy as np
import matplotlib.pyplot as plt
from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="pipeline_prompt2prompt").to("cuda")

prompts = ["A turtle playing with a ball",
           "A monkey playing with a ball"]

cross_attention_kwargs = {
    "edit_type": "replace",
    "cross_replace_steps": 0.4,
    "self_replace_steps": 0.4
}

outputs = pipe(prompt=prompts, height=512, width=512, num_inference_steps=50, cross_attention_kwargs=cross_attention_kwargs)
```

And abbreviated examples for the other edits:

`ReplaceEdit with local blend`

```python
prompts = ["A turtle playing with a ball",
           "A monkey playing with a ball"]

cross_attention_kwargs = {
    "edit_type": "replace",
    "cross_replace_steps": 0.4,
    "self_replace_steps": 0.4,
    "local_blend_words": ["turtle", "monkey"]
}
```

`RefineEdit`

```python
prompts = ["A turtle",
           "A turtle in a forest"]

cross_attention_kwargs = {
    "edit_type": "refine",
    "cross_replace_steps": 0.4,
    "self_replace_steps": 0.4,
}
```

`RefineEdit with local blend`

```python
prompts = ["A turtle",
           "A turtle in a forest"]

cross_attention_kwargs = {
    "edit_type": "refine",
    "cross_replace_steps": 0.4,
    "self_replace_steps": 0.4,
    "local_blend_words": ["in", "a" , "forest"]
}
```

`ReweightEdit`

```python
prompts = ["A smiling turtle"] * 2

edit_kcross_attention_kwargswargs = {
    "edit_type": "reweight",
    "cross_replace_steps": 0.4,
    "self_replace_steps": 0.4,
    "equalizer_words": ["smiling"],
    "equalizer_strengths": [5]
}
```

Side note: See [this GitHub gist](https://gist.github.com/UmerHA/b65bb5fb9626c9c73f3ade2869e36164) if you want to visualize the attention maps.

### Latent Consistency Pipeline

Latent Consistency Models was proposed in [Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference](https://arxiv.org/abs/2310.04378) by _Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, Hang Zhao_ from Tsinghua University.

The abstract of the paper reads as follows:

*Latent Diffusion models (LDMs) have achieved remarkable results in synthesizing high-resolution images. However, the iterative sampling process is computationally intensive and leads to slow generation. Inspired by Consistency Models (song et al.), we propose Latent Consistency Models (LCMs), enabling swift inference with minimal steps on any pre-trained LDMs, including Stable Diffusion (rombach et al). Viewing the guided reverse diffusion process as solving an augmented probability flow ODE (PF-ODE), LCMs are designed to directly predict the solution of such ODE in latent space, mitigating the need for numerous iterations and allowing rapid, high-fidelity sampling. Efficiently distilled from pre-trained classifier-free guided diffusion models, a high-quality 768 x 768 2~4-step LCM takes only 32 A100 GPU hours for training. Furthermore, we introduce Latent Consistency Fine-tuning (LCF), a novel method that is tailored for fine-tuning LCMs on customized image datasets. Evaluation on the LAION-5B-Aesthetics dataset demonstrates that LCMs achieve state-of-the-art text-to-image generation performance with few-step inference. Project Page: [this https URL](https://latent-consistency-models.github.io/)*

The model can be used with `diffusers` as follows:

- *1. Load the model from the community pipeline.*

```py
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_txt2img", custom_revision="main")

# To save GPU memory, torch.float16 can be used, but it may compromise image quality.
pipe.to(torch_device="cuda", torch_dtype=torch.float32)
```

- 2. Run inference with as little as 4 steps:

```py
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"

# Can be set to 1~50 steps. LCM supports fast inference even <= 4 steps. Recommend: 1~8 steps.
num_inference_steps = 4

images = pipe(prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=8.0, lcm_origin_steps=50, output_type="pil").images
```

For any questions or feedback, feel free to reach out to [Simian Luo](https://github.com/luosiallen).

You can also try this pipeline directly in the [🚀 official spaces](https://huggingface.co/spaces/SimianLuo/Latent_Consistency_Model).

### Latent Consistency Img2img Pipeline

This pipeline extends the Latent Consistency Pipeline to allow it to take an input image.

```py
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_img2img")

# To save GPU memory, torch.float16 can be used, but it may compromise image quality.
pipe.to(torch_device="cuda", torch_dtype=torch.float32)
```

- 2. Run inference with as little as 4 steps:

```py
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"


input_image=Image.open("myimg.png")

strength = 0.5  # strength =0 (no change) strength=1 (completely overwrite image)

# Can be set to 1~50 steps. LCM supports fast inference even <= 4 steps. Recommend: 1~8 steps.
num_inference_steps = 4

images = pipe(prompt=prompt, image=input_image, strength=strength, num_inference_steps=num_inference_steps, guidance_scale=8.0, lcm_origin_steps=50, output_type="pil").images
```

### Latent Consistency Interpolation Pipeline

This pipeline extends the Latent Consistency Pipeline to allow for interpolation of the latent space between multiple prompts. It is similar to the [Stable Diffusion Interpolate](https://github.com/huggingface/diffusers/blob/main/examples/community/interpolate_stable_diffusion.py) and [unCLIP Interpolate](https://github.com/huggingface/diffusers/blob/main/examples/community/unclip_text_interpolation.py) community pipelines.

```py
import torch
import numpy as np

from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_interpolate")

# To save GPU memory, torch.float16 can be used, but it may compromise image quality.
pipe.to(torch_device="cuda", torch_dtype=torch.float32)

prompts = [
    "Self-portrait oil painting, a beautiful cyborg with golden hair, Margot Robbie, 8k",
    "Self-portrait oil painting, an extremely strong man, body builder, Huge Jackman, 8k",
    "An astronaut floating in space, renaissance art, realistic, high quality, 8k",
    "Oil painting of a cat, cute, dream-like",
    "Hugging face emoji, cute, realistic"
]
num_inference_steps = 4
num_interpolation_steps = 60
seed = 1337

torch.manual_seed(seed)
np.random.seed(seed)

images = pipe(
    prompt=prompts,
    height=512,
    width=512,
    num_inference_steps=num_inference_steps,
    num_interpolation_steps=num_interpolation_steps,
    guidance_scale=8.0,
    embedding_interpolation_type="lerp",
    latent_interpolation_type="slerp",
    process_batch_size=4,  # Make it higher or lower based on your GPU memory
    generator=torch.Generator(seed),
)

assert len(images) == (len(prompts) - 1) * num_interpolation_steps
```

### StableDiffusionUpscaleLDM3D Pipeline

[LDM3D-VR](https://arxiv.org/pdf/2311.03226.pdf) is an extended version of LDM3D.

The abstract from the paper is:
*Latent diffusion models have proven to be state-of-the-art in the creation and manipulation of visual outputs. However, as far as we know, the generation of depth maps jointly with RGB is still limited. We introduce LDM3D-VR, a suite of diffusion models targeting virtual reality development that includes LDM3D-pano and LDM3D-SR. These models enable the generation of panoramic RGBD based on textual prompts and the upscaling of low-resolution inputs to high-resolution RGBD, respectively. Our models are fine-tuned from existing pretrained models on datasets containing panoramic/high-resolution RGB images, depth maps and captions. Both models are evaluated in comparison to existing related methods*

Two checkpoints are available for use:

- [ldm3d-pano](https://huggingface.co/Intel/ldm3d-pano). This checkpoint enables the generation of panoramic images and requires the StableDiffusionLDM3DPipeline pipeline to be used.
- [ldm3d-sr](https://huggingface.co/Intel/ldm3d-sr). This checkpoint enables the upscaling of RGB and depth images. Can be used in cascade after the original LDM3D pipeline using the StableDiffusionUpscaleLDM3DPipeline pipeline.

```py
from PIL import Image
import os
import torch
from diffusers import StableDiffusionLDM3DPipeline, DiffusionPipeline

# Generate a rgb/depth output from LDM3D

pipe_ldm3d = StableDiffusionLDM3DPipeline.from_pretrained("Intel/ldm3d-4c")
pipe_ldm3d.to("cuda")

prompt = "A picture of some lemons on a table"
output = pipe_ldm3d(prompt)
rgb_image, depth_image = output.rgb, output.depth
rgb_image[0].save("lemons_ldm3d_rgb.jpg")
depth_image[0].save("lemons_ldm3d_depth.png")

# Upscale the previous output to a resolution of (1024, 1024)

pipe_ldm3d_upscale = DiffusionPipeline.from_pretrained("Intel/ldm3d-sr", custom_pipeline="pipeline_stable_diffusion_upscale_ldm3d")

pipe_ldm3d_upscale.to("cuda")

low_res_img = Image.open("lemons_ldm3d_rgb.jpg").convert("RGB")
low_res_depth = Image.open("lemons_ldm3d_depth.png").convert("L")
outputs = pipe_ldm3d_upscale(prompt="high quality high resolution uhd 4k image", rgb=low_res_img, depth=low_res_depth, num_inference_steps=50, target_res=[1024, 1024])

upscaled_rgb, upscaled_depth = outputs.rgb[0], outputs.depth[0]
upscaled_rgb.save("upscaled_lemons_rgb.png")
upscaled_depth.save("upscaled_lemons_depth.png")
```

### ControlNet + T2I Adapter Pipeline

This pipeline combines both ControlNet and T2IAdapter into a single pipeline, where the forward pass is executed once.
It receives `control_image` and `adapter_image`, as well as `controlnet_conditioning_scale` and `adapter_conditioning_scale`, for the ControlNet and Adapter modules, respectively. Whenever `adapter_conditioning_scale=0` or `controlnet_conditioning_scale=0`, it will act as a full ControlNet module or as a full T2IAdapter module, respectively.

```py
import cv2
import numpy as np
import torch
from controlnet_aux.midas import MidasDetector
from PIL import Image

from diffusers import AutoencoderKL, ControlNetModel, MultiAdapter, T2IAdapter
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from diffusers.utils import load_image
from examples.community.pipeline_stable_diffusion_xl_controlnet_adapter import (
    StableDiffusionXLControlNetAdapterPipeline,
)

controlnet_depth = ControlNetModel.from_pretrained(
    "diffusers/controlnet-depth-sdxl-1.0",
    torch_dtype=torch.float16,
    variant="fp16",
    use_safetensors=True
)
adapter_depth = T2IAdapter.from_pretrained(
  "TencentARC/t2i-adapter-depth-midas-sdxl-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, use_safetensors=True)

pipe = StableDiffusionXLControlNetAdapterPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    controlnet=controlnet_depth,
    adapter=adapter_depth,
    vae=vae,
    variant="fp16",
    use_safetensors=True,
    torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")
pipe.enable_xformers_memory_efficient_attention()
# pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
midas_depth = MidasDetector.from_pretrained(
  "valhalla/t2iadapter-aux-models", filename="dpt_large_384.pt", model_type="dpt_large"
).to("cuda")

prompt = "a tiger sitting on a park bench"
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"

image = load_image(img_url).resize((1024, 1024))

depth_image = midas_depth(
  image, detect_resolution=512, image_resolution=1024
)

strength = 0.5

images = pipe(
    prompt,
    control_image=depth_image,
    adapter_image=depth_image,
    num_inference_steps=30,
    controlnet_conditioning_scale=strength,
    adapter_conditioning_scale=strength,
).images
images[0].save("controlnet_and_adapter.png")
```

### ControlNet + T2I Adapter + Inpainting Pipeline

```py
import cv2
import numpy as np
import torch
from controlnet_aux.midas import MidasDetector
from PIL import Image

from diffusers import AutoencoderKL, ControlNetModel, MultiAdapter, T2IAdapter
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from diffusers.utils import load_image
from examples.community.pipeline_stable_diffusion_xl_controlnet_adapter_inpaint import (
    StableDiffusionXLControlNetAdapterInpaintPipeline,
)

controlnet_depth = ControlNetModel.from_pretrained(
    "diffusers/controlnet-depth-sdxl-1.0",
    torch_dtype=torch.float16,
    variant="fp16",
    use_safetensors=True
)
adapter_depth = T2IAdapter.from_pretrained(
  "TencentARC/t2i-adapter-depth-midas-sdxl-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, use_safetensors=True)

pipe = StableDiffusionXLControlNetAdapterInpaintPipeline.from_pretrained(
    "diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
    controlnet=controlnet_depth,
    adapter=adapter_depth,
    vae=vae,
    variant="fp16",
    use_safetensors=True,
    torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")
pipe.enable_xformers_memory_efficient_attention()
# pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
midas_depth = MidasDetector.from_pretrained(
  "valhalla/t2iadapter-aux-models", filename="dpt_large_384.pt", model_type="dpt_large"
).to("cuda")

prompt = "a tiger sitting on a park bench"
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"

image = load_image(img_url).resize((1024, 1024))
mask_image = load_image(mask_url).resize((1024, 1024))

depth_image = midas_depth(
  image, detect_resolution=512, image_resolution=1024
)

strength = 0.4

images = pipe(
    prompt,
    image=image,
    mask_image=mask_image,
    control_image=depth_image,
    adapter_image=depth_image,
    num_inference_steps=30,
    controlnet_conditioning_scale=strength,
    adapter_conditioning_scale=strength,
    strength=0.7,
).images
images[0].save("controlnet_and_adapter_inpaint.png")
```

### Regional Prompting Pipeline

This pipeline is a port of the [Regional Prompter extension](https://github.com/hako-mikan/sd-webui-regional-prompter) for [Stable Diffusion web UI](https://github.com/AUTOMATIC1111/stable-diffusion-webui) to `diffusers`.
This code implements a pipeline for the Stable Diffusion model, enabling the division of the canvas into multiple regions, with different prompts applicable to each region. Users can specify regions in two ways: using `Cols` and `Rows` modes for grid-like divisions, or the `Prompt` mode for regions calculated based on prompts.

![sample](https://github.com/hako-mikan/sd-webui-regional-prompter/blob/imgs/rp_pipeline1.png)

### Usage

### Sample Code

```py
from examples.community.regional_prompting_stable_diffusion import RegionalPromptingStableDiffusionPipeline

pipe = RegionalPromptingStableDiffusionPipeline.from_single_file(model_path, vae=vae)

rp_args = {
    "mode":"rows",
    "div": "1;1;1"
}

prompt = """
green hair twintail BREAK
red blouse BREAK
blue skirt
"""

images = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    guidance_scale=7.5,
    height=768,
    width=512,
    num_inference_steps=20,
    num_images_per_prompt=1,
    rp_args=rp_args
    ).images

time = time.strftime(r"%Y%m%d%H%M%S")
i = 1
for image in images:
    i += 1
    fileName = f'img-{time}-{i+1}.png'
    image.save(fileName)
```

### Cols, Rows mode

In the Cols, Rows mode, you can split the screen vertically and horizontally and assign prompts to each region. The split ratio can be specified by 'div', and you can set the division ratio like '3;3;2' or '0.1;0.5'. Furthermore, as will be described later, you can also subdivide the split Cols, Rows to specify more complex regions.

In this image, the image is divided into three parts, and a separate prompt is applied to each. The prompts are divided by 'BREAK', and each is applied to the respective region.
![sample](https://github.com/hako-mikan/sd-webui-regional-prompter/blob/imgs/rp_pipeline2.png)

```
green hair twintail BREAK
red blouse BREAK
blue skirt
```

### 2-Dimentional division

The prompt consists of instructions separated by the term `BREAK` and is assigned to different regions of a two-dimensional space. The image is initially split in the main splitting direction, which in this case is rows, due to the presence of a single semicolon `;`, dividing the space into an upper and a lower section. Additional sub-splitting is then applied, indicated by commas. The upper row is split into ratios of `2:1:1`, while the lower row is split into a ratio of `4:6`. Rows themselves are split in a `1:2` ratio. According to the reference image, the blue sky is designated as the first region, green hair as the second, the bookshelf as the third, and so on, in a sequence based on their position from the top left. The terrarium is placed on the desk in the fourth region, and the orange dress and sofa are in the fifth region, conforming to their respective splits.

```py
rp_args = {
    "mode":"rows",
    "div": "1,2,1,1;2,4,6"
}

prompt = """
blue sky BREAK
green hair BREAK
book shelf BREAK
terrarium on the desk BREAK
orange dress and sofa
"""
```

![sample](https://github.com/hako-mikan/sd-webui-regional-prompter/blob/imgs/rp_pipeline4.png)

### Prompt Mode

There are limitations to methods of specifying regions in advance. This is because specifying regions can be a hindrance when designating complex shapes or dynamic compositions. In the region specified by the prompt, the region is determined after the image generation has begun. This allows us to accommodate compositions and complex regions.
For further infomagen, see [here](https://github.com/hako-mikan/sd-webui-regional-prompter/blob/main/prompt_en.md).

### Syntax

```
baseprompt target1 target2 BREAK
effect1, target1 BREAK
effect2 ,target2
```

First, write the base prompt. In the base prompt, write the words (target1, target2) for which you want to create a mask. Next, separate them with BREAK. Next, write the prompt corresponding to target1. Then enter a comma and write target1. The order of the targets in the base prompt and the order of the BREAK-separated targets can be back to back.

```
target2 baseprompt target1  BREAK
effect1, target1 BREAK
effect2 ,target2
```

is also effective.

### Sample

In this example, masks are calculated for shirt, tie, skirt, and color prompts are specified only for those regions.

```py
rp_args = {
    "mode": "prompt-ex",
    "save_mask": True,
    "th": "0.4,0.6,0.6",
}

prompt = """
a girl in street with shirt, tie, skirt BREAK
red, shirt BREAK
green, tie BREAK
blue , skirt
"""
```

![sample](https://github.com/hako-mikan/sd-webui-regional-prompter/blob/imgs/rp_pipeline3.png)

### Threshold

The threshold used to determine the mask created by the prompt. This can be set as many times as there are masks, as the range varies widely depending on the target prompt. If multiple regions are used, enter them separated by commas. For example, hair tends to be ambiguous and requires a small value, while face tends to be large and requires a small value. These should be ordered by BREAK.

```
a lady ,hair, face  BREAK
red, hair BREAK
tanned ,face
```

`threshold : 0.4,0.6`
If only one input is given for multiple regions, they are all assumed to be the same value.

### Prompt and Prompt-EX

The difference is that in Prompt, duplicate regions are added, whereas in Prompt-EX, duplicate regions are overwritten sequentially. Since they are processed in order, setting a TARGET with a large regions first makes it easier for the effect of small regions to remain unmuffled.

### Accuracy

In the case of a 512x512 image, Attention mode reduces the size of the region to about 8x8 pixels deep in the U-Net, so that small regions get mixed up; Latent mode calculates 64*64, so that the region is exact.

```
girl hair twintail frills,ribbons, dress, face BREAK
girl, ,face
```

### Mask

When an image is generated, the generated mask is displayed. It is generated at the same size as the image, but is actually used at a much smaller size.

### Use common prompt

You can attach the prompt up to ADDCOMM to all prompts by separating it first with ADDCOMM. This is useful when you want to include elements common to all regions. For example, when generating pictures of three people with different appearances, it's necessary to include the instruction of 'three people' in all regions. It's also useful when inserting quality tags and other things. "For example, if you write as follows:

```
best quality, 3persons in garden, ADDCOMM
a girl white dress BREAK
a boy blue shirt BREAK
an old man red suit
```

If common is enabled, this prompt is converted to the following:

```
best quality, 3persons in garden, a girl white dress BREAK
best quality, 3persons in garden, a boy blue shirt BREAK
best quality, 3persons in garden, an old man red suit
```

### Negative prompt

Negative prompts are equally effective across all regions, but it is possible to set region-specific prompts for negative prompts as well. The number of BREAKs must be the same as the number of prompts. If the number of prompts does not match, the negative prompts will be used without being divided into regions.

### Parameters

To activate Regional Prompter, it is necessary to enter settings in `rp_args`. The items that can be set are as follows. `rp_args` is a dictionary type.

### Input Parameters

Parameters are specified through the `rp_arg`(dictionary type).

```py
rp_args = {
    "mode":"rows",
    "div": "1;1;1"
}

pipe(prompt=prompt, rp_args=rp_args)
```

### Required Parameters

- `mode`: Specifies the method for defining regions. Choose from `Cols`, `Rows`, `Prompt`, or `Prompt-Ex`. This parameter is case-insensitive.
- `divide`: Used in `Cols` and `Rows` modes. Details on how to specify this are provided under the respective `Cols` and `Rows` sections.
- `th`: Used in `Prompt` mode. The method of specification is detailed under the `Prompt` section.

### Optional Parameters

- `save_mask`: In `Prompt` mode, choose whether to output the generated mask along with the image. The default is `False`.

The Pipeline supports `compel` syntax. Input prompts using the `compel` structure will be automatically applied and processed.

### Diffusion Posterior Sampling Pipeline

- Reference paper

    ```bibtex
    @article{chung2022diffusion,
    title={Diffusion posterior sampling for general noisy inverse problems},
    author={Chung, Hyungjin and Kim, Jeongsol and Mccann, Michael T and Klasky, Marc L and Ye, Jong Chul},
    journal={arXiv preprint arXiv:2209.14687},
    year={2022}
    }
    ```

- This pipeline allows zero-shot conditional sampling from the posterior distribution $p(x|y)$, given observation on $y$, unconditional generative model $p(x)$ and differentiable operator $y=f(x)$.

- For example, $f(.)$ can be downsample operator, then $y$ is a downsampled image, and the pipeline becomes a super-resolution pipeline.
- To use this pipeline, you need to know your operator $f(.)$ and corrupted image $y$, and pass them during the call. For example, as in the main function of `dps_pipeline.py`, you need to first define the Gaussian blurring operator $f(.)$. The operator should be a callable `nn.Module`, with all the parameter gradient disabled:

    ```python
    import torch.nn.functional as F
    import scipy
    from torch import nn

    # define the Gaussian blurring operator first
    class GaussialBlurOperator(nn.Module):
        def __init__(self, kernel_size, intensity):
            super().__init__()

            class Blurkernel(nn.Module):
                def __init__(self, blur_type='gaussian', kernel_size=31, std=3.0):
                    super().__init__()
                    self.blur_type = blur_type
                    self.kernel_size = kernel_size
                    self.std = std
                    self.seq = nn.Sequential(
                        nn.ReflectionPad2d(self.kernel_size//2),
                        nn.Conv2d(3, 3, self.kernel_size, stride=1, padding=0, bias=False, groups=3)
                    )
                    self.weights_init()

                def forward(self, x):
                    return self.seq(x)

                def weights_init(self):
                    if self.blur_type == "gaussian":
                        n = np.zeros((self.kernel_size, self.kernel_size))
                        n[self.kernel_size // 2, self.kernel_size // 2] = 1
                        k = scipy.ndimage.gaussian_filter(n, sigma=self.std)
                        k = torch.from_numpy(k)
                        self.k = k
                        for name, f in self.named_parameters():
                            f.data.copy_(k)
                    elif self.blur_type == "motion":
                        k = Kernel(size=(self.kernel_size, self.kernel_size), intensity=self.std).kernelMatrix
                        k = torch.from_numpy(k)
                        self.k = k
                        for name, f in self.named_parameters():
                            f.data.copy_(k)

                def update_weights(self, k):
                    if not torch.is_tensor(k):
                        k = torch.from_numpy(k)
                    for name, f in self.named_parameters():
                        f.data.copy_(k)

                def get_kernel(self):
                    return self.k

            self.kernel_size = kernel_size
            self.conv = Blurkernel(blur_type='gaussian',
                                kernel_size=kernel_size,
                                std=intensity)
            self.kernel = self.conv.get_kernel()
            self.conv.update_weights(self.kernel.type(torch.float32))

            for param in self.parameters():
                param.requires_grad = False

        def forward(self, data, **kwargs):
            return self.conv(data)

        def transpose(self, data, **kwargs):
            return data

        def get_kernel(self):
            return self.kernel.view(1, 1, self.kernel_size, self.kernel_size)
    ```

- Next, you should obtain the corrupted image $y$ by the operator. In this example, we generate $y$ from the source image $x$. However in practice, having the operator $f(.)$ and corrupted image $y$ is enough:

    ```python
    # set up source image
    src = Image.open('sample.png')
    # read image into [1,3,H,W]
    src = torch.from_numpy(np.array(src, dtype=np.float32)).permute(2,0,1)[None]
    # normalize image to [-1,1]
    src = (src / 127.5) - 1.0
    src = src.to("cuda")

    # set up operator and measurement
    operator = GaussialBlurOperator(kernel_size=61, intensity=3.0).to("cuda")
    measurement = operator(src)

    # save the source and corrupted images
    save_image((src+1.0)/2.0, "dps_src.png")
    save_image((measurement+1.0)/2.0, "dps_mea.png")
    ```

- We provide an example pair of saved source and corrupted images, using the Gaussian blur operator above
  - Source image:
  - ![sample](https://github.com/tongdaxu/Images/assets/22267548/4d2a1216-08d1-4aeb-9ce3-7a2d87561d65)
  - Gaussian blurred image:
  - ![ddpm_generated_image](https://github.com/tongdaxu/Images/assets/22267548/65076258-344b-4ed8-b704-a04edaade8ae)
  - You can download those images to run the example on your own.

- Next, we need to define a loss function used for diffusion posterior sample. For most of the cases, the RMSE is fine:

    ```python
    def RMSELoss(yhat, y):
        return torch.sqrt(torch.sum((yhat-y)**2))
    ```

- And next, as any other diffusion models, we need the score estimator and scheduler. As we are working with $256x256$ face images, we use ddpm-celebahq-256:

    ```python
    # set up scheduler
    scheduler = DDPMScheduler.from_pretrained("google/ddpm-celebahq-256")
    scheduler.set_timesteps(1000)

    # set up model
    model = UNet2DModel.from_pretrained("google/ddpm-celebahq-256").to("cuda")
    ```

- And finally, run the pipeline:

    ```python
    # finally, the pipeline
    dpspipe = DPSPipeline(model, scheduler)
    image = dpspipe(
        measurement=measurement,
        operator=operator,
        loss_fn=RMSELoss,
        zeta=1.0,
    ).images[0]
    image.save("dps_generated_image.png")
    ```

- The `zeta` is a hyperparameter that is in range of $[0,1]$. It needs to be tuned for best effect. By setting `zeta=1`, you should be able to have the reconstructed result:
  - Reconstructed image:
  - ![sample](https://github.com/tongdaxu/Images/assets/22267548/0ceb5575-d42e-4f0b-99c0-50e69c982209)

- The reconstruction is perceptually similar to the source image, but different in details.
- In `dps_pipeline.py`, we also provide a super-resolution example, which should produce:
  - Downsampled image:
  - ![dps_mea](https://github.com/tongdaxu/Images/assets/22267548/ff6a33d6-26f0-42aa-88ce-f8a76ba45a13)
  - Reconstructed image:
  - ![dps_generated_image](https://github.com/tongdaxu/Images/assets/22267548/b74f084d-93f4-4845-83d8-44c0fa758a5f)

### AnimateDiff ControlNet Pipeline

This pipeline combines AnimateDiff and ControlNet. Enjoy precise motion control for your videos! Refer to [this](https://github.com/huggingface/diffusers/issues/5866) issue for more details.

```py
import torch
from diffusers import AutoencoderKL, ControlNetModel, MotionAdapter, DiffusionPipeline, DPMSolverMultistepScheduler
from diffusers.utils import export_to_gif
from PIL import Image

motion_id = "guoyww/animatediff-motion-adapter-v1-5-2"
adapter = MotionAdapter.from_pretrained(motion_id)
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_openpose", torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)

model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = DiffusionPipeline.from_pretrained(
    model_id,
    motion_adapter=adapter,
    controlnet=controlnet,
    vae=vae,
    custom_pipeline="pipeline_animatediff_controlnet",
    torch_dtype=torch.float16,
).to(device="cuda")
pipe.scheduler = DPMSolverMultistepScheduler.from_pretrained(
    model_id, subfolder="scheduler", beta_schedule="linear", clip_sample=False, timestep_spacing="linspace", steps_offset=1
)
pipe.enable_vae_slicing()

conditioning_frames = []
for i in range(1, 16 + 1):
    conditioning_frames.append(Image.open(f"frame_{i}.png"))

prompt = "astronaut in space, dancing"
negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly"
result = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    width=512,
    height=768,
    conditioning_frames=conditioning_frames,
    num_inference_steps=20,
).frames[0]

export_to_gif(result.frames[0], "result.gif")
```

<table>
  <tr><td colspan="2" align=center><b>Conditioning Frames</b></td></tr>
  <tr align=center>
    <td align=center><img src="https://user-images.githubusercontent.com/7365912/265043418-23291941-864d-495a-8ba8-d02e05756396.gif" alt="input-frames"></td>
  </tr>
  <tr><td colspan="2" align=center><b>AnimateDiff model: SG161222/Realistic_Vision_V5.1_noVAE</b></td></tr>
  <tr>
    <td align=center><img src="https://github.com/huggingface/diffusers/assets/72266394/baf301e2-d03c-4129-bd84-203a1de2b2be" alt="gif-1"></td>
    <td align=center><img src="https://github.com/huggingface/diffusers/assets/72266394/9f923475-ecaf-452b-92c8-4e42171182d8" alt="gif-2"></td>
  </tr>
  <tr><td colspan="2" align=center><b>AnimateDiff model: CardosAnime</b></td></tr>
  <tr>
    <td align=center><img src="https://github.com/huggingface/diffusers/assets/72266394/b2c41028-38a0-45d6-86ed-fec7446b87f7" alt="gif-1"></td>
    <td align=center><img src="https://github.com/huggingface/diffusers/assets/72266394/eb7d2952-72e4-44fa-b664-077c79b4fc70" alt="gif-2"></td>
  </tr>
</table>

You can also use multiple controlnets at once!

```python
import torch
from diffusers import AutoencoderKL, ControlNetModel, MotionAdapter, DiffusionPipeline, DPMSolverMultistepScheduler
from diffusers.utils import export_to_gif
from PIL import Image

motion_id = "guoyww/animatediff-motion-adapter-v1-5-2"
adapter = MotionAdapter.from_pretrained(motion_id)
controlnet1 = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_openpose", torch_dtype=torch.float16)
controlnet2 = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)

model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = DiffusionPipeline.from_pretrained(
    model_id,
    motion_adapter=adapter,
    controlnet=[controlnet1, controlnet2],
    vae=vae,
    custom_pipeline="pipeline_animatediff_controlnet",
    torch_dtype=torch.float16,
).to(device="cuda")
pipe.scheduler = DPMSolverMultistepScheduler.from_pretrained(
    model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", steps_offset=1, beta_schedule="linear",
)
pipe.enable_vae_slicing()

def load_video(file_path: str):
    images = []

    if file_path.startswith(('http://', 'https://')):
        # If the file_path is a URL
        response = requests.get(file_path)
        response.raise_for_status()
        content = BytesIO(response.content)
        vid = imageio.get_reader(content)
    else:
        # Assuming it's a local file path
        vid = imageio.get_reader(file_path)

    for frame in vid:
        pil_image = Image.fromarray(frame)
        images.append(pil_image)

    return images

video = load_video("dance.gif")

# You need to install it using `pip install controlnet_aux`
from controlnet_aux.processor import Processor

p1 = Processor("openpose_full")
cn1 = [p1(frame) for frame in video]

p2 = Processor("canny")
cn2 = [p2(frame) for frame in video]

prompt = "astronaut in space, dancing"
negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly"
result = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    width=512,
    height=768,
    conditioning_frames=[cn1, cn2],
    num_inference_steps=20,
)

export_to_gif(result.frames[0], "result.gif")
```

### DemoFusion

This pipeline is the official implementation of [DemoFusion: Democratising High-Resolution Image Generation With No $$$](https://arxiv.org/abs/2311.16973).
The original repo can be found at [repo](https://github.com/PRIS-CV/DemoFusion).

- `view_batch_size` (`int`, defaults to 16):
  The batch size for multiple denoising paths. Typically, a larger batch size can result in higher efficiency but comes with increased GPU memory requirements.

- `stride` (`int`, defaults to 64):
  The stride of moving local patches. A smaller stride is better for alleviating seam issues, but it also introduces additional computational overhead and inference time.

- `cosine_scale_1` (`float`, defaults to 3):
  Control the strength of skip-residual. For specific impacts, please refer to Appendix C in the DemoFusion paper.

- `cosine_scale_2` (`float`, defaults to 1):
  Control the strength of dilated sampling. For specific impacts, please refer to Appendix C in the DemoFusion paper.

- `cosine_scale_3` (`float`, defaults to 1):
  Control the strength of the Gaussian filter. For specific impacts, please refer to Appendix C in the DemoFusion paper.

- `sigma` (`float`, defaults to 1):
  The standard value of the Gaussian filter. Larger sigma promotes the global guidance of dilated sampling, but has the potential of over-smoothing.

- `multi_decoder` (`bool`, defaults to True):
  Determine whether to use a tiled decoder. Generally, when the resolution exceeds 3072x3072, a tiled decoder becomes necessary.

- `show_image` (`bool`, defaults to False):
  Determine whether to show intermediate results during generation.

```py
from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    custom_pipeline="pipeline_demofusion_sdxl",
    custom_revision="main",
    torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")

prompt = "Envision a portrait of an elderly woman, her face a canvas of time, framed by a headscarf with muted tones of rust and cream. Her eyes, blue like faded denim. Her attire, simple yet dignified."
negative_prompt = "blurry, ugly, duplicate, poorly drawn, deformed, mosaic"

images = pipe(
    prompt,
    negative_prompt=negative_prompt,
    height=3072,
    width=3072,
    view_batch_size=16,
    stride=64,
    num_inference_steps=50,
    guidance_scale=7.5,
    cosine_scale_1=3,
    cosine_scale_2=1,
    cosine_scale_3=1,
    sigma=0.8,
    multi_decoder=True,
    show_image=True
)
```

You can display and save the generated images as:

```py
def image_grid(imgs, save_path=None):

    w = 0
    for i, img in enumerate(imgs):
        h_, w_ = imgs[i].size
        w += w_
    h = h_
    grid = Image.new('RGB', size=(w, h))
    grid_w, grid_h = grid.size

    w = 0
    for i, img in enumerate(imgs):
        h_, w_ = imgs[i].size
        grid.paste(img, box=(w, h - h_))
        if save_path != None:
            img.save(save_path + "/img_{}.jpg".format((i + 1) * 1024))
        w += w_

    return grid

image_grid(images, save_path="./outputs/")
```

 ![output_example](https://github.com/PRIS-CV/DemoFusion/blob/main/output_example.png)

### SDE Drag pipeline

This pipeline provides drag-and-drop image editing using stochastic differential equations. It enables image editing by inputting prompt, image, mask_image, source_points, and target_points.

![SDE Drag Image](https://github.com/huggingface/diffusers/assets/75928535/bd54f52f-f002-4951-9934-b2a4592771a5)

See [paper](https://arxiv.org/abs/2311.01410), [paper page](https://ml-gsai.github.io/SDE-Drag-demo/), [original repo](https://github.com/ML-GSAI/SDE-Drag) for more information.

```py
import PIL
import torch
from diffusers import DDIMScheduler, DiffusionPipeline

# Load the pipeline
model_path = "stable-diffusion-v1-5/stable-diffusion-v1-5"
scheduler = DDIMScheduler.from_pretrained(model_path, subfolder="scheduler")
pipe = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler, custom_pipeline="sde_drag")
pipe.to('cuda')

# To save GPU memory, torch.float16 can be used, but it may compromise image quality.
# If not training LoRA, please avoid using torch.float16
# pipe.to(torch.float16)

# Provide prompt, image, mask image, and the starting and target points for drag editing.
prompt = "prompt of the image"
image = PIL.Image.open('/path/to/image')
mask_image = PIL.Image.open('/path/to/mask_image')
source_points = [[123, 456]]
target_points = [[234, 567]]

# train_lora is optional, and in most cases, using train_lora can better preserve consistency with the original image.
pipe.train_lora(prompt, image)

output = pipe(prompt, image, mask_image, source_points, target_points)
output_image = PIL.Image.fromarray(output)
output_image.save("./output.png")
```

### Instaflow Pipeline

InstaFlow is an ultra-fast, one-step image generator that achieves image quality close to Stable Diffusion, significantly reducing the demand of computational resources. This efficiency is made possible through a recent [Rectified Flow](https://github.com/gnobitab/RectifiedFlow) technique, which trains probability flows with straight trajectories, hence inherently requiring only a single step for fast inference.

```python
from diffusers import DiffusionPipeline
import torch


pipe = DiffusionPipeline.from_pretrained("XCLIU/instaflow_0_9B_from_sd_1_5", torch_dtype=torch.float16, custom_pipeline="instaflow_one_step")
pipe.to("cuda")  ### if GPU is not available, comment this line
prompt = "A hyper-realistic photo of a cute cat."

images = pipe(prompt=prompt,
            num_inference_steps=1,
            guidance_scale=0.0).images
images[0].save("./image.png")
```

![image1](https://huggingface.co/datasets/ayushtues/instaflow_images/resolve/main/instaflow_cat.png)

You can also combine it with LORA out of the box, like <https://huggingface.co/artificialguybr/logo-redmond-1-5v-logo-lora-for-liberteredmond-sd-1-5>, to unlock cool use cases in single step!

```python
from diffusers import DiffusionPipeline
import torch


pipe = DiffusionPipeline.from_pretrained("XCLIU/instaflow_0_9B_from_sd_1_5", torch_dtype=torch.float16, custom_pipeline="instaflow_one_step")
pipe.to("cuda")  ### if GPU is not available, comment this line
pipe.load_lora_weights("artificialguybr/logo-redmond-1-5v-logo-lora-for-liberteredmond-sd-1-5")
prompt = "logo, A logo for a fitness app, dynamic running figure, energetic colors (red, orange) ),LogoRedAF ,"
images = pipe(prompt=prompt,
            num_inference_steps=1,
            guidance_scale=0.0).images
images[0].save("./image.png")
```

![image0](https://huggingface.co/datasets/ayushtues/instaflow_images/resolve/main/instaflow_logo.png)

### Null-Text Inversion pipeline

This pipeline provides null-text inversion for editing real images. It enables null-text optimization, and DDIM reconstruction via w, w/o null-text optimization. No prompt-to-prompt code is implemented as there is a Prompt2PromptPipeline.

- Reference paper

    ```bibtex
    @article{hertz2022prompt,
    title={Prompt-to-prompt image editing with cross attention control},
    author={Hertz, Amir and Mokady, Ron and Tenenbaum, Jay and Aberman, Kfir and Pritch, Yael and Cohen-Or, Daniel},
    booktitle={arXiv preprint arXiv:2208.01626},
    year={2022}
    ```}

```py
from diffusers import DDIMScheduler
from examples.community.pipeline_null_text_inversion import NullTextPipeline
import torch

device = "cuda"
# Provide invert_prompt and the image for null-text optimization.
invert_prompt = "A lying cat"
input_image = "siamese.jpg"
steps = 50

# Provide prompt used for generation. Same if reconstruction
prompt = "A lying cat"
# or different if editing.
prompt = "A lying dog"

# Float32 is essential to a well optimization
model_path = "stable-diffusion-v1-5/stable-diffusion-v1-5"
scheduler = DDIMScheduler(num_train_timesteps=1000, beta_start=0.00085, beta_end=0.0120, beta_schedule="scaled_linear")
pipeline = NullTextPipeline.from_pretrained(model_path, scheduler=scheduler, torch_dtype=torch.float32).to(device)

# Saves the inverted_latent to save time
inverted_latent, uncond = pipeline.invert(input_image, invert_prompt, num_inner_steps=10, early_stop_epsilon=1e-5, num_inference_steps=steps)
pipeline(prompt, uncond, inverted_latent, guidance_scale=7.5, num_inference_steps=steps).images[0].save(input_image+".output.jpg")
```

### Rerender A Video

This is the Diffusers implementation of zero-shot video-to-video translation pipeline [Rerender A Video](https://github.com/williamyang1991/Rerender_A_Video) (without Ebsynth postprocessing). To run the code, please install gmflow. Then modify the path in `gmflow_dir`. After that, you can run the pipeline with:

```py
import sys
gmflow_dir = "/path/to/gmflow"
sys.path.insert(0, gmflow_dir)

from diffusers import ControlNetModel, AutoencoderKL, DDIMScheduler
from diffusers.utils import export_to_video
import numpy as np
import torch

import cv2
from PIL import Image

def video_to_frame(video_path: str, interval: int):
    vidcap = cv2.VideoCapture(video_path)
    success = True

    count = 0
    res = []
    while success:
        count += 1
        success, image = vidcap.read()
        if count % interval != 1:
            continue
        if image is not None:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            res.append(image)

    vidcap.release()
    return res

input_video_path = 'path/to/video'
input_interval = 10
frames = video_to_frame(
    input_video_path, input_interval)

control_frames = []
# get canny image
for frame in frames:
    np_image = cv2.Canny(frame, 50, 100)
    np_image = np_image[:, :, None]
    np_image = np.concatenate([np_image, np_image, np_image], axis=2)
    canny_image = Image.fromarray(np_image)
    control_frames.append(canny_image)

# You can use any ControlNet here
controlnet = ControlNetModel.from_pretrained(
    "lllyasviel/sd-controlnet-canny").to('cuda')

# You can use any finetuned SD here
pipe = DiffusionPipeline.from_pretrained(
    "stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, custom_pipeline='rerender_a_video').to('cuda')

# Optional: you can download vae-ft-mse-840000-ema-pruned.ckpt to enhance the results
# pipe.vae = AutoencoderKL.from_single_file(
#     "path/to/vae-ft-mse-840000-ema-pruned.ckpt").to('cuda')

pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)

generator = torch.manual_seed(0)
frames = [Image.fromarray(frame) for frame in frames]
output_frames = pipe(
    "a beautiful woman in CG style, best quality, extremely detailed",
    frames,
    control_frames,
    num_inference_steps=20,
    strength=0.75,
    controlnet_conditioning_scale=0.7,
    generator=generator,
    warp_start=0.0,
    warp_end=0.1,
    mask_start=0.5,
    mask_end=0.8,
    mask_strength=0.5,
    negative_prompt='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
).frames[0]

export_to_video(
    output_frames, "/path/to/video.mp4", 5)
```

### StyleAligned Pipeline

This pipeline is the implementation of [Style Aligned Image Generation via Shared Attention](https://arxiv.org/abs/2312.02133). You can find more results [here](https://github.com/huggingface/diffusers/pull/6489#issuecomment-1881209354).

> Large-scale Text-to-Image (T2I) models have rapidly gained prominence across creative fields, generating visually compelling outputs from textual prompts. However, controlling these models to ensure consistent style remains challenging, with existing methods necessitating fine-tuning and manual intervention to disentangle content and style. In this paper, we introduce StyleAligned, a novel technique designed to establish style alignment among a series of generated images. By employing minimal `attention sharing' during the diffusion process, our method maintains style consistency across images within T2I models. This approach allows for the creation of style-consistent images using a reference style through a straightforward inversion operation. Our method's evaluation across diverse styles and text prompts demonstrates high-quality synthesis and fidelity, underscoring its efficacy in achieving consistent style across various inputs.

```python
from typing import List

import torch
from diffusers import DiffusionPipeline
from PIL import Image

model_id = "a-r-r-o-w/dreamshaper-xl-turbo"
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", custom_pipeline="pipeline_sdxl_style_aligned")
pipe = pipe.to("cuda")

# Enable memory saving techniques
pipe.enable_vae_slicing()
pipe.enable_vae_tiling()

prompt = [
  "a toy train. macro photo. 3d game asset",
  "a toy airplane. macro photo. 3d game asset",
  "a toy bicycle. macro photo. 3d game asset",
  "a toy car. macro photo. 3d game asset",
]
negative_prompt = "low quality, worst quality, "

# Enable StyleAligned
pipe.enable_style_aligned(
    share_group_norm=False,
    share_layer_norm=False,
    share_attention=True,
    adain_queries=True,
    adain_keys=True,
    adain_values=False,
    full_attention_share=False,
    shared_score_scale=1.0,
    shared_score_shift=0.0,
    only_self_level=0.0,
)

# Run inference
images = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    guidance_scale=2,
    height=1024,
    width=1024,
    num_inference_steps=10,
    generator=torch.Generator().manual_seed(42),
).images

# Disable StyleAligned if you do not wish to use it anymore
pipe.disable_style_aligned()
```

### AnimateDiff Image-To-Video Pipeline

This pipeline adds experimental support for the image-to-video task using AnimateDiff. Refer to [this](https://github.com/huggingface/diffusers/pull/6328) PR for more examples and results.

This pipeline relies on a "hack" discovered by the community that allows the generation of videos given an input image with AnimateDiff. It works by creating a copy of the image `num_frames` times and progressively adding more noise to the image based on the strength and latent interpolation method.

```py
import torch
from diffusers import MotionAdapter, DiffusionPipeline, DDIMScheduler
from diffusers.utils import export_to_gif, load_image

model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2")
pipe = DiffusionPipeline.from_pretrained(model_id, motion_adapter=adapter, custom_pipeline="pipeline_animatediff_img2video").to("cuda")
pipe.scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", beta_schedule="linear", steps_offset=1)

image = load_image("snail.png")
output = pipe(
  image=image,
  prompt="A snail moving on the ground",
  strength=0.8,
  latent_interpolation_method="slerp",  # can be lerp, slerp, or your own callback
)
frames = output.frames[0]
export_to_gif(frames, "animation.gif")
```

### IP Adapter Face ID

IP Adapter FaceID is an experimental IP Adapter model that uses image embeddings generated by `insightface`, so no image encoder needs to be loaded.
You need to install `insightface` and all its requirements to use this model.
You must pass the image embedding tensor as `image_embeds` to the `DiffusionPipeline` instead of `ip_adapter_image`.
You can find more results [here](https://github.com/huggingface/diffusers/pull/6276).

```py
import torch
from diffusers.utils import load_image
import cv2
import numpy as np
from diffusers import DiffusionPipeline, AutoencoderKL, DDIMScheduler
from insightface.app import FaceAnalysis


noise_scheduler = DDIMScheduler(
    num_train_timesteps=1000,
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="scaled_linear",
    clip_sample=False,
    set_alpha_to_one=False,
    steps_offset=1,
)
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(dtype=torch.float16)
pipeline = DiffusionPipeline.from_pretrained(
    "SG161222/Realistic_Vision_V4.0_noVAE",
    torch_dtype=torch.float16,
    scheduler=noise_scheduler,
    vae=vae,
    custom_pipeline="ip_adapter_face_id"
)
pipeline.load_ip_adapter_face_id("h94/IP-Adapter-FaceID", "ip-adapter-faceid_sd15.bin")
pipeline.to("cuda")

generator = torch.Generator(device="cpu").manual_seed(42)
num_images = 2

image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ai_face2.png")

app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
image = cv2.cvtColor(np.asarray(image), cv2.COLOR_BGR2RGB)
faces = app.get(image)
image = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
images = pipeline(
    prompt="A photo of a girl wearing a black dress, holding red roses in hand, upper body, behind is the Eiffel Tower",
    image_embeds=image,
    negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
    num_inference_steps=20, num_images_per_prompt=num_images, width=512, height=704,
    generator=generator
).images

for i in range(num_images):
    images[i].save(f"c{i}.png")
```

### InstantID Pipeline

InstantID is a new state-of-the-art tuning-free method to achieve ID-Preserving generation with only single image, supporting various downstream tasks. For any usage question, please refer to the [official implementation](https://github.com/InstantID/InstantID).

```py
# !pip install diffusers opencv-python transformers accelerate insightface
import diffusers
from diffusers.utils import load_image
from diffusers import ControlNetModel

import cv2
import torch
import numpy as np
from PIL import Image

from insightface.app import FaceAnalysis
from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline, draw_kps

# prepare 'antelopev2' under ./models
# https://github.com/deepinsight/insightface/issues/1896#issuecomment-1023867304
app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))

# prepare models under ./checkpoints
# https://huggingface.co/InstantX/InstantID
from huggingface_hub import hf_hub_download

hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints")
hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/diffusion_pytorch_model.safetensors", local_dir="./checkpoints")
hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")

face_adapter = './checkpoints/ip-adapter.bin'
controlnet_path = './checkpoints/ControlNetModel'

# load IdentityNet
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)

base_model = 'wangqixun/YamerMIX_v8'
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
    base_model,
    controlnet=controlnet,
    torch_dtype=torch.float16
)
pipe.to("cuda")

# load adapter
pipe.load_ip_adapter_instantid(face_adapter)

# load an image
face_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ai_face2.png")

# prepare face emb
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1]  # only use the maximum face
face_emb = face_info['embedding']
face_kps = draw_kps(face_image, face_info['kps'])

# prompt
prompt = "film noir style, ink sketch|vector, male man, highly detailed, sharp focus, ultra sharpness, monochrome, high contrast, dramatic shadows, 1940s style, mysterious, cinematic"
negative_prompt = "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, vibrant, colorful"

# generate image
pipe.set_ip_adapter_scale(0.8)
image = pipe(
    prompt,
    image_embeds=face_emb,
    image=face_kps,
    controlnet_conditioning_scale=0.8,
).images[0]
```

### UFOGen Scheduler

[UFOGen](https://arxiv.org/abs/2311.09257) is a generative model designed for fast one-step text-to-image generation, trained via adversarial training starting from an initial pretrained diffusion model such as Stable Diffusion. `scheduling_ufogen.py` implements a onestep and multistep sampling algorithm for UFOGen models compatible with pipelines like `StableDiffusionPipeline`. A usage example is as follows:

```py
import torch
from diffusers import StableDiffusionPipeline

from scheduling_ufogen import UFOGenScheduler

# NOTE: currently, I am not aware of any publicly available UFOGen model checkpoints trained from SD v1.5.
ufogen_model_id_or_path = "/path/to/ufogen/model"
pipe = StableDiffusionPipeline(
    ufogen_model_id_or_path,
    torch_dtype=torch.float16,
)

# You can initialize a UFOGenScheduler as follows:
pipe.scheduler = UFOGenScheduler.from_config(pipe.scheduler.config)

prompt = "Three cats having dinner at a table at new years eve, cinematic shot, 8k."

# Onestep sampling
onestep_image = pipe(prompt, num_inference_steps=1).images[0]

# Multistep sampling
multistep_image = pipe(prompt, num_inference_steps=4).images[0]
```

### FRESCO

This is the Diffusers implementation of zero-shot video-to-video translation pipeline [FRESCO](https://github.com/williamyang1991/FRESCO) (without Ebsynth postprocessing and background smooth). To run the code, please install gmflow. Then modify the path in `gmflow_dir`. After that, you can run the pipeline with:

```py
from PIL import Image
import cv2
import torch
import numpy as np

from diffusers import ControlNetModel, DDIMScheduler, DiffusionPipeline
import sys

gmflow_dir = "/path/to/gmflow"
sys.path.insert(0, gmflow_dir)

def video_to_frame(video_path: str, interval: int):
    vidcap = cv2.VideoCapture(video_path)
    success = True

    count = 0
    res = []
    while success:
        count += 1
        success, image = vidcap.read()
        if count % interval != 1:
            continue
        if image is not None:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            res.append(image)
            if len(res) >= 8:
                break

    vidcap.release()
    return res


input_video_path = 'https://github.com/williamyang1991/FRESCO/raw/main/data/car-turn.mp4'
output_video_path = 'car.gif'

# You can use any finetuned SD here
model_path = 'SG161222/Realistic_Vision_V2.0'

prompt = 'a red car turns in the winter'
a_prompt = ', RAW photo, subject, (high detailed skin:1.2), 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3, '
n_prompt = '(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers:1.4), (deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation'

input_interval = 5
frames = video_to_frame(
    input_video_path, input_interval)

control_frames = []
# get canny image
for frame in frames:
    image = cv2.Canny(frame, 50, 100)
    np_image = np.array(image)
    np_image = np_image[:, :, None]
    np_image = np.concatenate([np_image, np_image, np_image], axis=2)
    canny_image = Image.fromarray(np_image)
    control_frames.append(canny_image)

# You can use any ControlNet here
controlnet = ControlNetModel.from_pretrained(
    "lllyasviel/sd-controlnet-canny").to('cuda')

pipe = DiffusionPipeline.from_pretrained(
    model_path, controlnet=controlnet, custom_pipeline='fresco_v2v').to('cuda')
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)

generator = torch.manual_seed(0)
frames = [Image.fromarray(frame) for frame in frames]

output_frames = pipe(
    prompt + a_prompt,
    frames,
    control_frames,
    num_inference_steps=20,
    strength=0.75,
    controlnet_conditioning_scale=0.7,
    generator=generator,
    negative_prompt=n_prompt
).images

output_frames[0].save(output_video_path, save_all=True,
                 append_images=output_frames[1:], duration=100, loop=0)
```

### AnimateDiff on IPEX

This diffusion pipeline aims to accelerate the inference of AnimateDiff on Intel Xeon CPUs with BF16/FP32 precision using [IPEX](https://github.com/intel/intel-extension-for-pytorch).

To use this pipeline, you need to:
1. Install [IPEX](https://github.com/intel/intel-extension-for-pytorch)

**Note:** For each PyTorch release, there is a corresponding release of IPEX. Here is the mapping relationship. It is recommended to install Pytorch/IPEX2.3 to get the best performance.

|PyTorch Version|IPEX Version|
|--|--|
|[v2.3.\*](https://github.com/pytorch/pytorch/tree/v2.3.0 "v2.3.0")|[v2.3.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v2.3.0+cpu)|
|[v1.13.\*](https://github.com/pytorch/pytorch/tree/v1.13.0 "v1.13.0")|[v1.13.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v1.13.100+cpu)|

You can simply use pip to install IPEX with the latest version.
```python
python -m pip install intel_extension_for_pytorch
```
**Note:** To install a specific version, run with the following command:
```
python -m pip install intel_extension_for_pytorch==<version_name> -f https://developer.intel.com/ipex-whl-stable-cpu
```
2. After pipeline initialization, `prepare_for_ipex()` should be called to enable IPEX accelaration. Supported inference datatypes are Float32 and BFloat16.

```python
pipe = AnimateDiffPipelineIpex.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
# For Float32
pipe.prepare_for_ipex(torch.float32, prompt="A girl smiling")
# For BFloat16
pipe.prepare_for_ipex(torch.bfloat16, prompt="A girl smiling")
```

Then you can use the ipex pipeline in a similar way to the default animatediff pipeline.
```python
# For Float32
output = pipe(prompt="A girl smiling", guidance_scale=1.0, num_inference_steps=step)
# For BFloat16
with torch.cpu.amp.autocast(enabled = True, dtype = torch.bfloat16):
    output = pipe(prompt="A girl smiling", guidance_scale=1.0, num_inference_steps=step)
```

The following code compares the performance of the original animatediff pipeline with the ipex-optimized pipeline.
By using this optimized pipeline, we can get about 1.5-2.2 times performance boost with BFloat16 on the fifth generation of Intel Xeon CPUs, code-named Emerald Rapids.

```python
import torch
from diffusers import MotionAdapter, AnimateDiffPipeline, EulerDiscreteScheduler
from safetensors.torch import load_file
from pipeline_animatediff_ipex import AnimateDiffPipelineIpex
import time

device = "cpu"
dtype = torch.float32

prompt = "A girl smiling"
step = 8  # Options: [1,2,4,8]
repo = "ByteDance/AnimateDiff-Lightning"
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
base = "emilianJR/epiCRealism"  # Choose to your favorite base model.

adapter = MotionAdapter().to(device, dtype)
adapter.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device))

# Helper function for time evaluation
def elapsed_time(pipeline, nb_pass=3, num_inference_steps=1):
    # warmup
    for _ in range(2):
        output = pipeline(prompt = prompt, guidance_scale=1.0, num_inference_steps = num_inference_steps)
    #time evaluation
    start = time.time()
    for _ in range(nb_pass):
        pipeline(prompt = prompt, guidance_scale=1.0, num_inference_steps = num_inference_steps)
    end = time.time()
    return (end - start) / nb_pass

##############     bf16 inference performance    ###############

# 1. IPEX Pipeline initialization
pipe = AnimateDiffPipelineIpex.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
pipe.prepare_for_ipex(torch.bfloat16, prompt = prompt)

# 2. Original Pipeline initialization
pipe2 = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
pipe2.scheduler = EulerDiscreteScheduler.from_config(pipe2.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")

# 3. Compare performance between Original Pipeline and IPEX Pipeline
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16):
    latency = elapsed_time(pipe, num_inference_steps=step)
    print("Latency of AnimateDiffPipelineIpex--bf16", latency, "s for total", step, "steps")
    latency = elapsed_time(pipe2, num_inference_steps=step)
    print("Latency of AnimateDiffPipeline--bf16", latency, "s for total", step, "steps")

##############     fp32 inference performance    ###############

# 1. IPEX Pipeline initialization
pipe3 = AnimateDiffPipelineIpex.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
pipe3.scheduler = EulerDiscreteScheduler.from_config(pipe3.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
pipe3.prepare_for_ipex(torch.float32, prompt = prompt)

# 2. Original Pipeline initialization
pipe4 = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
pipe4.scheduler = EulerDiscreteScheduler.from_config(pipe4.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")

# 3. Compare performance between Original Pipeline and IPEX Pipeline
latency = elapsed_time(pipe3, num_inference_steps=step)
print("Latency of AnimateDiffPipelineIpex--fp32", latency, "s for total", step, "steps")
latency = elapsed_time(pipe4, num_inference_steps=step)
print("Latency of AnimateDiffPipeline--fp32",latency, "s for total", step, "steps")
```
### HunyuanDiT with Differential Diffusion

#### Usage

```python
import torch
from diffusers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import load_image
from PIL import Image
from torchvision import transforms

from pipeline_hunyuandit_differential_img2img import (
    HunyuanDiTDifferentialImg2ImgPipeline,
)


pipe = HunyuanDiTDifferentialImg2ImgPipeline.from_pretrained(
    "Tencent-Hunyuan/HunyuanDiT-Diffusers", torch_dtype=torch.float16
).to("cuda")


source_image = load_image(
    "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/20240329211129_4024911930.png"
)
map = load_image(
    "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/gradient_mask_2.png"
)
prompt = "a green pear"
negative_prompt = "blurry"

image = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    image=source_image,
    num_inference_steps=28,
    guidance_scale=4.5,
    strength=1.0,
    map=map,
).images[0]
```

| ![Gradient](https://github.com/user-attachments/assets/e38ce4d5-1ae6-4df0-ab43-adc1b45716b5) | ![Input](https://github.com/user-attachments/assets/9c95679c-e9d7-4f5a-90d6-560203acd6b3) | ![Output](https://github.com/user-attachments/assets/5313ff64-a0c4-418b-8b55-a38f1a5e7532) |
| ------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------- |
| Gradient                                                                                   | Input                                                                                   | Output                                                                                   |

A colab notebook demonstrating all results can be found [here](https://colab.research.google.com/drive/1v44a5fpzyr4Ffr4v2XBQ7BajzG874N4P?usp=sharing). Depth Maps have also been added in the same colab.

# Perturbed-Attention Guidance

[Project](https://ku-cvlab.github.io/Perturbed-Attention-Guidance/) / [arXiv](https://arxiv.org/abs/2403.17377) / [GitHub](https://github.com/KU-CVLAB/Perturbed-Attention-Guidance)

This implementation is based on [Diffusers](https://huggingface.co/docs/diffusers/index). `StableDiffusionPAGPipeline` is a modification of `StableDiffusionPipeline` to support Perturbed-Attention Guidance (PAG).

## Example Usage

```py
import os
import torch

from accelerate.utils import set_seed

from diffusers import StableDiffusionPipeline
from diffusers.utils import load_image, make_image_grid
from diffusers.utils.torch_utils import randn_tensor

pipe = StableDiffusionPipeline.from_pretrained(
    "stable-diffusion-v1-5/stable-diffusion-v1-5",
    custom_pipeline="hyoungwoncho/sd_perturbed_attention_guidance",
    torch_dtype=torch.float16
)

device = "cuda"
pipe = pipe.to(device)

pag_scale = 5.0
pag_applied_layers_index = ['m0']

batch_size = 4
seed = 10

base_dir = "./results/"
grid_dir = base_dir + "/pag" + str(pag_scale) + "/"

if not os.path.exists(grid_dir):
    os.makedirs(grid_dir)

set_seed(seed)

latent_input = randn_tensor(shape=(batch_size,4,64,64), generator=None, device=device, dtype=torch.float16)

output_baseline = pipe(
    "",
    width=512,
    height=512,
    num_inference_steps=50,
    guidance_scale=0.0,
    pag_scale=0.0,
    pag_applied_layers_index=pag_applied_layers_index,
    num_images_per_prompt=batch_size,
    latents=latent_input
).images

output_pag = pipe(
    "",
    width=512,
    height=512,
    num_inference_steps=50,
    guidance_scale=0.0,
    pag_scale=5.0,
    pag_applied_layers_index=pag_applied_layers_index,
    num_images_per_prompt=batch_size,
    latents=latent_input
).images

grid_image = make_image_grid(output_baseline + output_pag, rows=2, cols=batch_size)
grid_image.save(grid_dir + "sample.png")
```

## PAG Parameters

`pag_scale` : guidance scale of PAG (ex: 5.0)

`pag_applied_layers_index` : index of the layer to apply perturbation (ex: ['m0'])