File size: 5,778 Bytes
c426a27
 
 
10240e0
c426a27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10240e0
 
 
 
 
c426a27
 
 
 
 
 
 
 
 
 
 
 
10240e0
c426a27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import cv2
import numpy as np
from PIL import Image
import copy


def colormap(rgb=True):
	color_list = np.array(
		[
			0.000, 0.000, 0.000,
			1.000, 1.000, 1.000,
			1.000, 0.498, 0.313,
			0.392, 0.581, 0.929,
			0.000, 0.447, 0.741,
			0.850, 0.325, 0.098,
			0.929, 0.694, 0.125,
			0.494, 0.184, 0.556,
			0.466, 0.674, 0.188,
			0.301, 0.745, 0.933,
			0.635, 0.078, 0.184,
			0.300, 0.300, 0.300,
			0.600, 0.600, 0.600,
			1.000, 0.000, 0.000,
			1.000, 0.500, 0.000,
			0.749, 0.749, 0.000,
			0.000, 1.000, 0.000,
			0.000, 0.000, 1.000,
			0.667, 0.000, 1.000,
			0.333, 0.333, 0.000,
			0.333, 0.667, 0.000,
			0.333, 1.000, 0.000,
			0.667, 0.333, 0.000,
			0.667, 0.667, 0.000,
			0.667, 1.000, 0.000,
			1.000, 0.333, 0.000,
			1.000, 0.667, 0.000,
			1.000, 1.000, 0.000,
			0.000, 0.333, 0.500,
			0.000, 0.667, 0.500,
			0.000, 1.000, 0.500,
			0.333, 0.000, 0.500,
			0.333, 0.333, 0.500,
			0.333, 0.667, 0.500,
			0.333, 1.000, 0.500,
			0.667, 0.000, 0.500,
			0.667, 0.333, 0.500,
			0.667, 0.667, 0.500,
			0.667, 1.000, 0.500,
			1.000, 0.000, 0.500,
			1.000, 0.333, 0.500,
			1.000, 0.667, 0.500,
			1.000, 1.000, 0.500,
			0.000, 0.333, 1.000,
			0.000, 0.667, 1.000,
			0.000, 1.000, 1.000,
			0.333, 0.000, 1.000,
			0.333, 0.333, 1.000,
			0.333, 0.667, 1.000,
			0.333, 1.000, 1.000,
			0.667, 0.000, 1.000,
			0.667, 0.333, 1.000,
			0.667, 0.667, 1.000,
			0.667, 1.000, 1.000,
			1.000, 0.000, 1.000,
			1.000, 0.333, 1.000,
			1.000, 0.667, 1.000,
			0.167, 0.000, 0.000,
			0.333, 0.000, 0.000,
			0.500, 0.000, 0.000,
			0.667, 0.000, 0.000,
			0.833, 0.000, 0.000,
			1.000, 0.000, 0.000,
			0.000, 0.167, 0.000,
			0.000, 0.333, 0.000,
			0.000, 0.500, 0.000,
			0.000, 0.667, 0.000,
			0.000, 0.833, 0.000,
			0.000, 1.000, 0.000,
			0.000, 0.000, 0.167,
			0.000, 0.000, 0.333,
			0.000, 0.000, 0.500,
			0.000, 0.000, 0.667,
			0.000, 0.000, 0.833,
			0.000, 0.000, 1.000,
			0.143, 0.143, 0.143,
			0.286, 0.286, 0.286,
			0.429, 0.429, 0.429,
			0.571, 0.571, 0.571,
			0.714, 0.714, 0.714,
			0.857, 0.857, 0.857
		]
	).astype(np.float32)
	color_list = color_list.reshape((-1, 3)) * 255
	if not rgb:
		color_list = color_list[:, ::-1]
	return color_list


color_list = colormap()
color_list = color_list.astype('uint8').tolist()


def gauss_filter(kernel_size, sigma):
	max_idx = kernel_size // 2
	idx = np.linspace(-max_idx, max_idx, kernel_size)
	Y, X = np.meshgrid(idx, idx)
	gauss_filter = np.exp(-(X**2 + Y**2) / (2*sigma**2))
	gauss_filter /= np.sum(np.sum(gauss_filter))
	
	return gauss_filter


def vis_add_mask(image, mask, color, alpha, kernel_size):
	color = np.array(color)
	mask = mask.astype('float').copy()
	mask = (cv2.GaussianBlur(mask, (kernel_size, kernel_size), kernel_size) / 255.) * (alpha)

	for i in range(3):
		image[:, :, i] = image[:, :, i] * (1-alpha+mask) + color[i] * (alpha-mask)

	return image


def vis_add_mask_wo_blur(image, mask, color, alpha):
	color = np.array(color)
	mask = mask.astype('float').copy()
	for i in range(3):
		image[:, :, i] = image[:, :, i] * (1-alpha+mask) + color[i] * (alpha-mask)
	return image


def mask_painter(input_image, input_mask, background_alpha=0.7, background_blur_radius=7, contour_width=3, contour_color=3, contour_alpha=1):
	"""
	Input:
	input_image: numpy array
	input_mask: numpy array
	background_alpha: transparency of background, [0, 1], 1: all black, 0: do nothing
	background_blur_radius: radius of background blur, must be odd number
	contour_width: width of mask contour, must be odd number
	contour_color: color index (in color map) of mask contour, 0: black, 1: white, >1: others
	contour_alpha: transparency of mask contour, [0, 1], if 0: no contour highlighted

	Output:
	painted_image: numpy array
	"""
	assert input_image.shape[:2] == input_mask.shape, 'different shape'
	assert background_blur_radius % 2 * contour_width % 2 > 0, 'background_blur_radius and contour_width must be ODD'

	width, height = input_image.shape[0], input_image.shape[1]
	res = 1024
	ratio = min(1.0 * res / max(width, height), 1.0)  
	input_image = cv2.resize(input_image, (int(height*ratio), int(width*ratio)))
	input_mask = cv2.resize(input_mask, (int(height*ratio), int(width*ratio)))
	# 0: background, 1: foreground
	input_mask[input_mask>0] = 255

	# mask background
	painted_image = vis_add_mask(input_image, input_mask, color_list[0], background_alpha, background_blur_radius)	# black for background
	# mask contour
	contour_mask = input_mask.copy()
	contour_mask = cv2.Canny(contour_mask, 100, 200)	# contour extraction
	# widden contour
	kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (contour_width, contour_width))
	contour_mask = cv2.dilate(contour_mask, kernel)
	painted_image = vis_add_mask(painted_image, 255-contour_mask, color_list[contour_color], contour_alpha, contour_width)
	painted_image = cv2.resize(painted_image, (height, width))
	return painted_image


if __name__ == '__main__':
	
	background_alpha = 0.7  	# transparency of background 1: all black, 0: do nothing
	background_blur_radius = 35	# radius of background blur, must be odd number
	contour_width = 7       	# contour width, must be odd number
	contour_color = 3      		# id in color map, 0: black, 1: white, >1: others
	contour_alpha = 1       	# transparency of background, 0: no contour highlighted

	# load input image and mask
	input_image = np.array(Image.open('./test_img/painter_input_image.jpg').convert('RGB'))
	input_mask = np.array(Image.open('./test_img/painter_input_mask.jpg').convert('P'))
	
	# paint
	painted_image = mask_painter(input_image, input_mask, background_alpha, background_blur_radius, contour_width, contour_color, contour_alpha)

	# save
	painted_image = Image.fromarray(painted_image)
	painted_image.save('./test_img/painter_output_image.png')