File size: 17,566 Bytes
9a84ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import os
import cv2
import requests
import numpy as np
from PIL import Image
import time
import sys
import urllib
from tqdm import tqdm
import hashlib

def is_platform_win():
    return sys.platform == "win32"


def colormap(rgb=True):
    color_list = np.array(
        [
            0.000, 0.000, 0.000,
            1.000, 1.000, 1.000,
            1.000, 0.498, 0.313,
            0.392, 0.581, 0.929,
            0.000, 0.447, 0.741,
            0.850, 0.325, 0.098,
            0.929, 0.694, 0.125,
            0.494, 0.184, 0.556,
            0.466, 0.674, 0.188,
            0.301, 0.745, 0.933,
            0.635, 0.078, 0.184,
            0.300, 0.300, 0.300,
            0.600, 0.600, 0.600,
            1.000, 0.000, 0.000,
            1.000, 0.500, 0.000,
            0.749, 0.749, 0.000,
            0.000, 1.000, 0.000,
            0.000, 0.000, 1.000,
            0.667, 0.000, 1.000,
            0.333, 0.333, 0.000,
            0.333, 0.667, 0.000,
            0.333, 1.000, 0.000,
            0.667, 0.333, 0.000,
            0.667, 0.667, 0.000,
            0.667, 1.000, 0.000,
            1.000, 0.333, 0.000,
            1.000, 0.667, 0.000,
            1.000, 1.000, 0.000,
            0.000, 0.333, 0.500,
            0.000, 0.667, 0.500,
            0.000, 1.000, 0.500,
            0.333, 0.000, 0.500,
            0.333, 0.333, 0.500,
            0.333, 0.667, 0.500,
            0.333, 1.000, 0.500,
            0.667, 0.000, 0.500,
            0.667, 0.333, 0.500,
            0.667, 0.667, 0.500,
            0.667, 1.000, 0.500,
            1.000, 0.000, 0.500,
            1.000, 0.333, 0.500,
            1.000, 0.667, 0.500,
            1.000, 1.000, 0.500,
            0.000, 0.333, 1.000,
            0.000, 0.667, 1.000,
            0.000, 1.000, 1.000,
            0.333, 0.000, 1.000,
            0.333, 0.333, 1.000,
            0.333, 0.667, 1.000,
            0.333, 1.000, 1.000,
            0.667, 0.000, 1.000,
            0.667, 0.333, 1.000,
            0.667, 0.667, 1.000,
            0.667, 1.000, 1.000,
            1.000, 0.000, 1.000,
            1.000, 0.333, 1.000,
            1.000, 0.667, 1.000,
            0.167, 0.000, 0.000,
            0.333, 0.000, 0.000,
            0.500, 0.000, 0.000,
            0.667, 0.000, 0.000,
            0.833, 0.000, 0.000,
            1.000, 0.000, 0.000,
            0.000, 0.167, 0.000,
            0.000, 0.333, 0.000,
            0.000, 0.500, 0.000,
            0.000, 0.667, 0.000,
            0.000, 0.833, 0.000,
            0.000, 1.000, 0.000,
            0.000, 0.000, 0.167,
            0.000, 0.000, 0.333,
            0.000, 0.000, 0.500,
            0.000, 0.000, 0.667,
            0.000, 0.000, 0.833,
            0.000, 0.000, 1.000,
            0.143, 0.143, 0.143,
            0.286, 0.286, 0.286,
            0.429, 0.429, 0.429,
            0.571, 0.571, 0.571,
            0.714, 0.714, 0.714,
            0.857, 0.857, 0.857
        ]
    ).astype(np.float32)
    color_list = color_list.reshape((-1, 3)) * 255
    if not rgb:
        color_list = color_list[:, ::-1]
    return color_list


color_list = colormap()
color_list = color_list.astype('uint8').tolist()


def vis_add_mask(image, mask, color, alpha, kernel_size):
    color = np.array(color)
    mask = mask.astype('float').copy()
    mask = (cv2.GaussianBlur(mask, (kernel_size, kernel_size), kernel_size) / 255.) * (alpha)
    for i in range(3):
        image[:, :, i] = image[:, :, i] * (1-alpha+mask) + color[i] * (alpha-mask)
    return image


def vis_add_mask_wo_blur(image, mask, color, alpha):
    color = np.array(color)
    mask = mask.astype('float').copy()
    for i in range(3):
        image[:, :, i] = image[:, :, i] * (1-alpha+mask) + color[i] * (alpha-mask)
    return image


def vis_add_mask_wo_gaussian(image, background_mask, contour_mask, background_color, contour_color, background_alpha, contour_alpha):
    background_color = np.array(background_color)
    contour_color = np.array(contour_color)

    # background_mask = 1 - background_mask
    # contour_mask = 1 - contour_mask

    for i in range(3):
        image[:, :, i] = image[:, :, i] * (1-background_alpha+background_mask*background_alpha) \
                         + background_color[i] * (background_alpha-background_mask*background_alpha)

        image[:, :, i] = image[:, :, i] * (1-contour_alpha+contour_mask*contour_alpha) \
                         + contour_color[i] * (contour_alpha-contour_mask*contour_alpha)

    return image.astype('uint8')


def mask_painter(input_image, input_mask, background_alpha=0.7, background_blur_radius=7, contour_width=3, contour_color=3, contour_alpha=1, background_color=0, paint_foreground=False):
    """
    add color mask to the background/foreground area
    input_image: numpy array (w, h, C)
    input_mask: numpy array (w, h)
    background_alpha: transparency of background, [0, 1], 1: all black, 0: do nothing
    background_blur_radius: radius of background blur, must be odd number
    contour_width: width of mask contour, must be odd number
    contour_color: color index (in color map) of mask contour, 0: black, 1: white, >1: others
    background_color: color index of the background (area with input_mask == False)
    contour_alpha: transparency of mask contour, [0, 1], if 0: no contour highlighted
    paint_foreground: True for paint on foreground, False for background. Default: Flase

    Output:
    painted_image: numpy array
    """
    assert input_image.shape[:2] == input_mask.shape, 'different shape'
    assert background_blur_radius % 2 * contour_width % 2 > 0, 'background_blur_radius and contour_width must be ODD'

    # 0: background, 1: foreground
    input_mask[input_mask>0] = 255
    if paint_foreground:
        painted_image = vis_add_mask(input_image, 255 - input_mask, color_list[background_color], background_alpha, background_blur_radius)    # black for background
    else:
          # mask background
        painted_image = vis_add_mask(input_image, input_mask, color_list[background_color], background_alpha, background_blur_radius)    # black for background
    # mask contour
    contour_mask = input_mask.copy()
    contour_mask = cv2.Canny(contour_mask, 100, 200)    # contour extraction
    # widden contour
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (contour_width, contour_width))
    contour_mask = cv2.dilate(contour_mask, kernel)
    painted_image = vis_add_mask(painted_image, 255-contour_mask, color_list[contour_color], contour_alpha, contour_width)
    return painted_image


def mask_painter_foreground_all(input_image, input_masks, background_alpha=0.7, background_blur_radius=7, contour_width=3, contour_color=3, contour_alpha=1):
    """
    paint color mask on the all foreground area
    input_image: numpy array with shape (w, h, C)
    input_mask: list of masks, each mask is a numpy array with shape (w,h)
    background_alpha: transparency of background, [0, 1], 1: all black, 0: do nothing
    background_blur_radius: radius of background blur, must be odd number
    contour_width: width of mask contour, must be odd number
    contour_color: color index (in color map) of mask contour, 0: black, 1: white, >1: others
    background_color: color index of the background (area with input_mask == False)
    contour_alpha: transparency of mask contour, [0, 1], if 0: no contour highlighted

    Output:
    painted_image: numpy array
    """
    
    for i, input_mask in enumerate(input_masks):
        input_image = mask_painter(input_image, input_mask,  background_alpha, background_blur_radius, contour_width, contour_color, contour_alpha, background_color=i + 2, paint_foreground=True)
    return input_image

def mask_generator_00(mask, background_radius, contour_radius):
    # no background width when '00'
    # distance map
    dist_transform_fore = cv2.distanceTransform(mask, cv2.DIST_L2, 3)
    dist_transform_back = cv2.distanceTransform(1-mask, cv2.DIST_L2, 3)
    dist_map = dist_transform_fore - dist_transform_back
    # ...:::!!!:::...
    contour_radius += 2
    contour_mask = np.abs(np.clip(dist_map, -contour_radius, contour_radius))
    contour_mask = contour_mask / np.max(contour_mask)
    contour_mask[contour_mask>0.5] = 1.

    return mask, contour_mask


def mask_generator_01(mask, background_radius, contour_radius):
    # no background width when '00'
    # distance map
    dist_transform_fore = cv2.distanceTransform(mask, cv2.DIST_L2, 3)
    dist_transform_back = cv2.distanceTransform(1-mask, cv2.DIST_L2, 3)
    dist_map = dist_transform_fore - dist_transform_back
    # ...:::!!!:::...
    contour_radius += 2
    contour_mask = np.abs(np.clip(dist_map, -contour_radius, contour_radius))
    contour_mask = contour_mask / np.max(contour_mask)
    return mask, contour_mask


def mask_generator_10(mask, background_radius, contour_radius):
    # distance map
    dist_transform_fore = cv2.distanceTransform(mask, cv2.DIST_L2, 3)
    dist_transform_back = cv2.distanceTransform(1-mask, cv2.DIST_L2, 3)
    dist_map = dist_transform_fore - dist_transform_back
    # .....:::::!!!!!
    background_mask = np.clip(dist_map, -background_radius, background_radius)
    background_mask = (background_mask - np.min(background_mask))
    background_mask = background_mask / np.max(background_mask)
    # ...:::!!!:::...
    contour_radius += 2
    contour_mask = np.abs(np.clip(dist_map, -contour_radius, contour_radius))
    contour_mask = contour_mask / np.max(contour_mask)
    contour_mask[contour_mask>0.5] = 1.
    return background_mask, contour_mask


def mask_generator_11(mask, background_radius, contour_radius):
    # distance map
    dist_transform_fore = cv2.distanceTransform(mask, cv2.DIST_L2, 3)
    dist_transform_back = cv2.distanceTransform(1-mask, cv2.DIST_L2, 3)
    dist_map = dist_transform_fore - dist_transform_back
    # .....:::::!!!!!
    background_mask = np.clip(dist_map, -background_radius, background_radius)
    background_mask = (background_mask - np.min(background_mask))
    background_mask = background_mask / np.max(background_mask)
    # ...:::!!!:::...
    contour_radius += 2
    contour_mask = np.abs(np.clip(dist_map, -contour_radius, contour_radius))
    contour_mask = contour_mask / np.max(contour_mask)
    return background_mask, contour_mask


def mask_painter_wo_gaussian(input_image, input_mask, background_alpha=0.5, background_blur_radius=7, contour_width=3, contour_color=3, contour_alpha=1, mode='11'):
    """
    Input:
    input_image: numpy array
    input_mask: numpy array
    background_alpha: transparency of background, [0, 1], 1: all black, 0: do nothing
    background_blur_radius: radius of background blur, must be odd number
    contour_width: width of mask contour, must be odd number
    contour_color: color index (in color map) of mask contour, 0: black, 1: white, >1: others
    contour_alpha: transparency of mask contour, [0, 1], if 0: no contour highlighted
    mode: painting mode, '00', no blur, '01' only blur contour, '10' only blur background, '11' blur both

    Output:
    painted_image: numpy array
    """
    assert input_image.shape[:2] == input_mask.shape, 'different shape'
    assert background_blur_radius % 2 * contour_width % 2 > 0, 'background_blur_radius and contour_width must be ODD'
    assert mode in ['00', '01', '10', '11'], 'mode should be 00, 01, 10, or 11'

    # downsample input image and mask
    width, height = input_image.shape[0], input_image.shape[1]
    res = 1024
    ratio = min(1.0 * res / max(width, height), 1.0)
    input_image = cv2.resize(input_image, (int(height*ratio), int(width*ratio)))
    input_mask = cv2.resize(input_mask, (int(height*ratio), int(width*ratio)))

    # 0: background, 1: foreground
    msk = np.clip(input_mask, 0, 1)

    # generate masks for background and contour pixels
    background_radius = (background_blur_radius - 1) // 2
    contour_radius = (contour_width - 1) // 2
    generator_dict = {'00':mask_generator_00, '01':mask_generator_01, '10':mask_generator_10, '11':mask_generator_11}
    background_mask, contour_mask = generator_dict[mode](msk, background_radius, contour_radius)

    # paint
    painted_image = vis_add_mask_wo_gaussian \
        (input_image, background_mask, contour_mask, color_list[0], color_list[contour_color], background_alpha, contour_alpha)    # black for background

    return painted_image


if __name__ == '__main__':

    background_alpha = 0.7      # transparency of background 1: all black, 0: do nothing
    background_blur_radius = 31    # radius of background blur, must be odd number
    contour_width = 11           # contour width, must be odd number
    contour_color = 3              # id in color map, 0: black, 1: white, >1: others
    contour_alpha = 1           # transparency of background, 0: no contour highlighted

    # load input image and mask
    input_image = np.array(Image.open('./test_images/painter_input_image.jpg').convert('RGB'))
    input_mask = np.array(Image.open('./test_images/painter_input_mask.jpg').convert('P'))

    # paint
    overall_time_1 = 0
    overall_time_2 = 0
    overall_time_3 = 0
    overall_time_4 = 0
    overall_time_5 = 0

    for i in range(50):
        t2 = time.time()
        painted_image_00 = mask_painter_wo_gaussian(input_image, input_mask, background_alpha, background_blur_radius, contour_width, contour_color, contour_alpha, mode='00')
        e2 = time.time()

        t3 = time.time()
        painted_image_10 = mask_painter_wo_gaussian(input_image, input_mask, background_alpha, background_blur_radius, contour_width, contour_color, contour_alpha, mode='10')
        e3 = time.time()

        t1 = time.time()
        painted_image = mask_painter(input_image, input_mask, background_alpha, background_blur_radius, contour_width, contour_color, contour_alpha)
        e1 = time.time()

        t4 = time.time()
        painted_image_01 = mask_painter_wo_gaussian(input_image, input_mask, background_alpha, background_blur_radius, contour_width, contour_color, contour_alpha, mode='01')
        e4 = time.time()

        t5 = time.time()
        painted_image_11 = mask_painter_wo_gaussian(input_image, input_mask, background_alpha, background_blur_radius, contour_width, contour_color, contour_alpha, mode='11')
        e5 = time.time()

        overall_time_1 += (e1 - t1)
        overall_time_2 += (e2 - t2)
        overall_time_3 += (e3 - t3)
        overall_time_4 += (e4 - t4)
        overall_time_5 += (e5 - t5)

    print(f'average time w gaussian: {overall_time_1/50}')
    print(f'average time w/o gaussian00: {overall_time_2/50}')
    print(f'average time w/o gaussian10: {overall_time_3/50}')
    print(f'average time w/o gaussian01: {overall_time_4/50}')
    print(f'average time w/o gaussian11: {overall_time_5/50}')

    # save
    painted_image_00 = Image.fromarray(painted_image_00)
    painted_image_00.save('./test_images/painter_output_image_00.png')

    painted_image_10 = Image.fromarray(painted_image_10)
    painted_image_10.save('./test_images/painter_output_image_10.png')

    painted_image_01 = Image.fromarray(painted_image_01)
    painted_image_01.save('./test_images/painter_output_image_01.png')

    painted_image_11 = Image.fromarray(painted_image_11)
    painted_image_11.save('./test_images/painter_output_image_11.png')


seg_model_map = {
    'base': 'vit_b',
    'large': 'vit_l',
    'huge': 'vit_h'
}
ckpt_url_map = {
    'vit_b': 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth',
    'vit_l': 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth',
    'vit_h': 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth'
}
expected_sha256_map = {
    'vit_b': 'ec2df62732614e57411cdcf32a23ffdf28910380d03139ee0f4fcbe91eb8c912',
	'vit_l': '3adcc4315b642a4d2101128f611684e8734c41232a17c648ed1693702a49a622',
	'vit_h': 'a7bf3b02f3ebf1267aba913ff637d9a2d5c33d3173bb679e46d9f338c26f262e'
}
def prepare_segmenter(segmenter = "huge", download_root: str = None):
    """
    Prepare segmenter model and download checkpoint if necessary.

    Returns: segmenter model name from 'vit_b', 'vit_l', 'vit_h'.

    """

    os.makedirs('result', exist_ok=True)
    seg_model_name = seg_model_map[segmenter]
    checkpoint_url = ckpt_url_map[seg_model_name]
    folder = download_root or os.path.expanduser("~/.cache/SAM")
    filename = os.path.basename(checkpoint_url)
    segmenter_checkpoint = download_checkpoint(checkpoint_url, folder, filename, expected_sha256_map[seg_model_name])

    return seg_model_name, segmenter_checkpoint


def download_checkpoint(url, folder, filename, expected_sha256):
    os.makedirs(folder, exist_ok=True)
    download_target = os.path.join(folder, filename)
    if os.path.isfile(download_target):
        if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
            return download_target
        
    print(f'Download SAM checkpoint {url}, saving to {download_target} ...')
    with requests.get(url, stream=True) as response, open(download_target, "wb") as output:
        progress = tqdm(total=int(response.headers.get('content-length', 0)), unit='B', unit_scale=True)
        for data in response.iter_content(chunk_size=1024):
            size = output.write(data)
            progress.update(size)
    if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
        raise RuntimeError("Model has been downloaded but the SHA256 checksum does not not match")
    return download_target