Spaces:
Runtime error
Runtime error
File size: 17,566 Bytes
9a84ec8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
import os
import cv2
import requests
import numpy as np
from PIL import Image
import time
import sys
import urllib
from tqdm import tqdm
import hashlib
def is_platform_win():
return sys.platform == "win32"
def colormap(rgb=True):
color_list = np.array(
[
0.000, 0.000, 0.000,
1.000, 1.000, 1.000,
1.000, 0.498, 0.313,
0.392, 0.581, 0.929,
0.000, 0.447, 0.741,
0.850, 0.325, 0.098,
0.929, 0.694, 0.125,
0.494, 0.184, 0.556,
0.466, 0.674, 0.188,
0.301, 0.745, 0.933,
0.635, 0.078, 0.184,
0.300, 0.300, 0.300,
0.600, 0.600, 0.600,
1.000, 0.000, 0.000,
1.000, 0.500, 0.000,
0.749, 0.749, 0.000,
0.000, 1.000, 0.000,
0.000, 0.000, 1.000,
0.667, 0.000, 1.000,
0.333, 0.333, 0.000,
0.333, 0.667, 0.000,
0.333, 1.000, 0.000,
0.667, 0.333, 0.000,
0.667, 0.667, 0.000,
0.667, 1.000, 0.000,
1.000, 0.333, 0.000,
1.000, 0.667, 0.000,
1.000, 1.000, 0.000,
0.000, 0.333, 0.500,
0.000, 0.667, 0.500,
0.000, 1.000, 0.500,
0.333, 0.000, 0.500,
0.333, 0.333, 0.500,
0.333, 0.667, 0.500,
0.333, 1.000, 0.500,
0.667, 0.000, 0.500,
0.667, 0.333, 0.500,
0.667, 0.667, 0.500,
0.667, 1.000, 0.500,
1.000, 0.000, 0.500,
1.000, 0.333, 0.500,
1.000, 0.667, 0.500,
1.000, 1.000, 0.500,
0.000, 0.333, 1.000,
0.000, 0.667, 1.000,
0.000, 1.000, 1.000,
0.333, 0.000, 1.000,
0.333, 0.333, 1.000,
0.333, 0.667, 1.000,
0.333, 1.000, 1.000,
0.667, 0.000, 1.000,
0.667, 0.333, 1.000,
0.667, 0.667, 1.000,
0.667, 1.000, 1.000,
1.000, 0.000, 1.000,
1.000, 0.333, 1.000,
1.000, 0.667, 1.000,
0.167, 0.000, 0.000,
0.333, 0.000, 0.000,
0.500, 0.000, 0.000,
0.667, 0.000, 0.000,
0.833, 0.000, 0.000,
1.000, 0.000, 0.000,
0.000, 0.167, 0.000,
0.000, 0.333, 0.000,
0.000, 0.500, 0.000,
0.000, 0.667, 0.000,
0.000, 0.833, 0.000,
0.000, 1.000, 0.000,
0.000, 0.000, 0.167,
0.000, 0.000, 0.333,
0.000, 0.000, 0.500,
0.000, 0.000, 0.667,
0.000, 0.000, 0.833,
0.000, 0.000, 1.000,
0.143, 0.143, 0.143,
0.286, 0.286, 0.286,
0.429, 0.429, 0.429,
0.571, 0.571, 0.571,
0.714, 0.714, 0.714,
0.857, 0.857, 0.857
]
).astype(np.float32)
color_list = color_list.reshape((-1, 3)) * 255
if not rgb:
color_list = color_list[:, ::-1]
return color_list
color_list = colormap()
color_list = color_list.astype('uint8').tolist()
def vis_add_mask(image, mask, color, alpha, kernel_size):
color = np.array(color)
mask = mask.astype('float').copy()
mask = (cv2.GaussianBlur(mask, (kernel_size, kernel_size), kernel_size) / 255.) * (alpha)
for i in range(3):
image[:, :, i] = image[:, :, i] * (1-alpha+mask) + color[i] * (alpha-mask)
return image
def vis_add_mask_wo_blur(image, mask, color, alpha):
color = np.array(color)
mask = mask.astype('float').copy()
for i in range(3):
image[:, :, i] = image[:, :, i] * (1-alpha+mask) + color[i] * (alpha-mask)
return image
def vis_add_mask_wo_gaussian(image, background_mask, contour_mask, background_color, contour_color, background_alpha, contour_alpha):
background_color = np.array(background_color)
contour_color = np.array(contour_color)
# background_mask = 1 - background_mask
# contour_mask = 1 - contour_mask
for i in range(3):
image[:, :, i] = image[:, :, i] * (1-background_alpha+background_mask*background_alpha) \
+ background_color[i] * (background_alpha-background_mask*background_alpha)
image[:, :, i] = image[:, :, i] * (1-contour_alpha+contour_mask*contour_alpha) \
+ contour_color[i] * (contour_alpha-contour_mask*contour_alpha)
return image.astype('uint8')
def mask_painter(input_image, input_mask, background_alpha=0.7, background_blur_radius=7, contour_width=3, contour_color=3, contour_alpha=1, background_color=0, paint_foreground=False):
"""
add color mask to the background/foreground area
input_image: numpy array (w, h, C)
input_mask: numpy array (w, h)
background_alpha: transparency of background, [0, 1], 1: all black, 0: do nothing
background_blur_radius: radius of background blur, must be odd number
contour_width: width of mask contour, must be odd number
contour_color: color index (in color map) of mask contour, 0: black, 1: white, >1: others
background_color: color index of the background (area with input_mask == False)
contour_alpha: transparency of mask contour, [0, 1], if 0: no contour highlighted
paint_foreground: True for paint on foreground, False for background. Default: Flase
Output:
painted_image: numpy array
"""
assert input_image.shape[:2] == input_mask.shape, 'different shape'
assert background_blur_radius % 2 * contour_width % 2 > 0, 'background_blur_radius and contour_width must be ODD'
# 0: background, 1: foreground
input_mask[input_mask>0] = 255
if paint_foreground:
painted_image = vis_add_mask(input_image, 255 - input_mask, color_list[background_color], background_alpha, background_blur_radius) # black for background
else:
# mask background
painted_image = vis_add_mask(input_image, input_mask, color_list[background_color], background_alpha, background_blur_radius) # black for background
# mask contour
contour_mask = input_mask.copy()
contour_mask = cv2.Canny(contour_mask, 100, 200) # contour extraction
# widden contour
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (contour_width, contour_width))
contour_mask = cv2.dilate(contour_mask, kernel)
painted_image = vis_add_mask(painted_image, 255-contour_mask, color_list[contour_color], contour_alpha, contour_width)
return painted_image
def mask_painter_foreground_all(input_image, input_masks, background_alpha=0.7, background_blur_radius=7, contour_width=3, contour_color=3, contour_alpha=1):
"""
paint color mask on the all foreground area
input_image: numpy array with shape (w, h, C)
input_mask: list of masks, each mask is a numpy array with shape (w,h)
background_alpha: transparency of background, [0, 1], 1: all black, 0: do nothing
background_blur_radius: radius of background blur, must be odd number
contour_width: width of mask contour, must be odd number
contour_color: color index (in color map) of mask contour, 0: black, 1: white, >1: others
background_color: color index of the background (area with input_mask == False)
contour_alpha: transparency of mask contour, [0, 1], if 0: no contour highlighted
Output:
painted_image: numpy array
"""
for i, input_mask in enumerate(input_masks):
input_image = mask_painter(input_image, input_mask, background_alpha, background_blur_radius, contour_width, contour_color, contour_alpha, background_color=i + 2, paint_foreground=True)
return input_image
def mask_generator_00(mask, background_radius, contour_radius):
# no background width when '00'
# distance map
dist_transform_fore = cv2.distanceTransform(mask, cv2.DIST_L2, 3)
dist_transform_back = cv2.distanceTransform(1-mask, cv2.DIST_L2, 3)
dist_map = dist_transform_fore - dist_transform_back
# ...:::!!!:::...
contour_radius += 2
contour_mask = np.abs(np.clip(dist_map, -contour_radius, contour_radius))
contour_mask = contour_mask / np.max(contour_mask)
contour_mask[contour_mask>0.5] = 1.
return mask, contour_mask
def mask_generator_01(mask, background_radius, contour_radius):
# no background width when '00'
# distance map
dist_transform_fore = cv2.distanceTransform(mask, cv2.DIST_L2, 3)
dist_transform_back = cv2.distanceTransform(1-mask, cv2.DIST_L2, 3)
dist_map = dist_transform_fore - dist_transform_back
# ...:::!!!:::...
contour_radius += 2
contour_mask = np.abs(np.clip(dist_map, -contour_radius, contour_radius))
contour_mask = contour_mask / np.max(contour_mask)
return mask, contour_mask
def mask_generator_10(mask, background_radius, contour_radius):
# distance map
dist_transform_fore = cv2.distanceTransform(mask, cv2.DIST_L2, 3)
dist_transform_back = cv2.distanceTransform(1-mask, cv2.DIST_L2, 3)
dist_map = dist_transform_fore - dist_transform_back
# .....:::::!!!!!
background_mask = np.clip(dist_map, -background_radius, background_radius)
background_mask = (background_mask - np.min(background_mask))
background_mask = background_mask / np.max(background_mask)
# ...:::!!!:::...
contour_radius += 2
contour_mask = np.abs(np.clip(dist_map, -contour_radius, contour_radius))
contour_mask = contour_mask / np.max(contour_mask)
contour_mask[contour_mask>0.5] = 1.
return background_mask, contour_mask
def mask_generator_11(mask, background_radius, contour_radius):
# distance map
dist_transform_fore = cv2.distanceTransform(mask, cv2.DIST_L2, 3)
dist_transform_back = cv2.distanceTransform(1-mask, cv2.DIST_L2, 3)
dist_map = dist_transform_fore - dist_transform_back
# .....:::::!!!!!
background_mask = np.clip(dist_map, -background_radius, background_radius)
background_mask = (background_mask - np.min(background_mask))
background_mask = background_mask / np.max(background_mask)
# ...:::!!!:::...
contour_radius += 2
contour_mask = np.abs(np.clip(dist_map, -contour_radius, contour_radius))
contour_mask = contour_mask / np.max(contour_mask)
return background_mask, contour_mask
def mask_painter_wo_gaussian(input_image, input_mask, background_alpha=0.5, background_blur_radius=7, contour_width=3, contour_color=3, contour_alpha=1, mode='11'):
"""
Input:
input_image: numpy array
input_mask: numpy array
background_alpha: transparency of background, [0, 1], 1: all black, 0: do nothing
background_blur_radius: radius of background blur, must be odd number
contour_width: width of mask contour, must be odd number
contour_color: color index (in color map) of mask contour, 0: black, 1: white, >1: others
contour_alpha: transparency of mask contour, [0, 1], if 0: no contour highlighted
mode: painting mode, '00', no blur, '01' only blur contour, '10' only blur background, '11' blur both
Output:
painted_image: numpy array
"""
assert input_image.shape[:2] == input_mask.shape, 'different shape'
assert background_blur_radius % 2 * contour_width % 2 > 0, 'background_blur_radius and contour_width must be ODD'
assert mode in ['00', '01', '10', '11'], 'mode should be 00, 01, 10, or 11'
# downsample input image and mask
width, height = input_image.shape[0], input_image.shape[1]
res = 1024
ratio = min(1.0 * res / max(width, height), 1.0)
input_image = cv2.resize(input_image, (int(height*ratio), int(width*ratio)))
input_mask = cv2.resize(input_mask, (int(height*ratio), int(width*ratio)))
# 0: background, 1: foreground
msk = np.clip(input_mask, 0, 1)
# generate masks for background and contour pixels
background_radius = (background_blur_radius - 1) // 2
contour_radius = (contour_width - 1) // 2
generator_dict = {'00':mask_generator_00, '01':mask_generator_01, '10':mask_generator_10, '11':mask_generator_11}
background_mask, contour_mask = generator_dict[mode](msk, background_radius, contour_radius)
# paint
painted_image = vis_add_mask_wo_gaussian \
(input_image, background_mask, contour_mask, color_list[0], color_list[contour_color], background_alpha, contour_alpha) # black for background
return painted_image
if __name__ == '__main__':
background_alpha = 0.7 # transparency of background 1: all black, 0: do nothing
background_blur_radius = 31 # radius of background blur, must be odd number
contour_width = 11 # contour width, must be odd number
contour_color = 3 # id in color map, 0: black, 1: white, >1: others
contour_alpha = 1 # transparency of background, 0: no contour highlighted
# load input image and mask
input_image = np.array(Image.open('./test_images/painter_input_image.jpg').convert('RGB'))
input_mask = np.array(Image.open('./test_images/painter_input_mask.jpg').convert('P'))
# paint
overall_time_1 = 0
overall_time_2 = 0
overall_time_3 = 0
overall_time_4 = 0
overall_time_5 = 0
for i in range(50):
t2 = time.time()
painted_image_00 = mask_painter_wo_gaussian(input_image, input_mask, background_alpha, background_blur_radius, contour_width, contour_color, contour_alpha, mode='00')
e2 = time.time()
t3 = time.time()
painted_image_10 = mask_painter_wo_gaussian(input_image, input_mask, background_alpha, background_blur_radius, contour_width, contour_color, contour_alpha, mode='10')
e3 = time.time()
t1 = time.time()
painted_image = mask_painter(input_image, input_mask, background_alpha, background_blur_radius, contour_width, contour_color, contour_alpha)
e1 = time.time()
t4 = time.time()
painted_image_01 = mask_painter_wo_gaussian(input_image, input_mask, background_alpha, background_blur_radius, contour_width, contour_color, contour_alpha, mode='01')
e4 = time.time()
t5 = time.time()
painted_image_11 = mask_painter_wo_gaussian(input_image, input_mask, background_alpha, background_blur_radius, contour_width, contour_color, contour_alpha, mode='11')
e5 = time.time()
overall_time_1 += (e1 - t1)
overall_time_2 += (e2 - t2)
overall_time_3 += (e3 - t3)
overall_time_4 += (e4 - t4)
overall_time_5 += (e5 - t5)
print(f'average time w gaussian: {overall_time_1/50}')
print(f'average time w/o gaussian00: {overall_time_2/50}')
print(f'average time w/o gaussian10: {overall_time_3/50}')
print(f'average time w/o gaussian01: {overall_time_4/50}')
print(f'average time w/o gaussian11: {overall_time_5/50}')
# save
painted_image_00 = Image.fromarray(painted_image_00)
painted_image_00.save('./test_images/painter_output_image_00.png')
painted_image_10 = Image.fromarray(painted_image_10)
painted_image_10.save('./test_images/painter_output_image_10.png')
painted_image_01 = Image.fromarray(painted_image_01)
painted_image_01.save('./test_images/painter_output_image_01.png')
painted_image_11 = Image.fromarray(painted_image_11)
painted_image_11.save('./test_images/painter_output_image_11.png')
seg_model_map = {
'base': 'vit_b',
'large': 'vit_l',
'huge': 'vit_h'
}
ckpt_url_map = {
'vit_b': 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth',
'vit_l': 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth',
'vit_h': 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth'
}
expected_sha256_map = {
'vit_b': 'ec2df62732614e57411cdcf32a23ffdf28910380d03139ee0f4fcbe91eb8c912',
'vit_l': '3adcc4315b642a4d2101128f611684e8734c41232a17c648ed1693702a49a622',
'vit_h': 'a7bf3b02f3ebf1267aba913ff637d9a2d5c33d3173bb679e46d9f338c26f262e'
}
def prepare_segmenter(segmenter = "huge", download_root: str = None):
"""
Prepare segmenter model and download checkpoint if necessary.
Returns: segmenter model name from 'vit_b', 'vit_l', 'vit_h'.
"""
os.makedirs('result', exist_ok=True)
seg_model_name = seg_model_map[segmenter]
checkpoint_url = ckpt_url_map[seg_model_name]
folder = download_root or os.path.expanduser("~/.cache/SAM")
filename = os.path.basename(checkpoint_url)
segmenter_checkpoint = download_checkpoint(checkpoint_url, folder, filename, expected_sha256_map[seg_model_name])
return seg_model_name, segmenter_checkpoint
def download_checkpoint(url, folder, filename, expected_sha256):
os.makedirs(folder, exist_ok=True)
download_target = os.path.join(folder, filename)
if os.path.isfile(download_target):
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
return download_target
print(f'Download SAM checkpoint {url}, saving to {download_target} ...')
with requests.get(url, stream=True) as response, open(download_target, "wb") as output:
progress = tqdm(total=int(response.headers.get('content-length', 0)), unit='B', unit_scale=True)
for data in response.iter_content(chunk_size=1024):
size = output.write(data)
progress.update(size)
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
raise RuntimeError("Model has been downloaded but the SHA256 checksum does not not match")
return download_target |