File size: 14,473 Bytes
8c4daf1
 
e62836e
8c4daf1
 
 
 
 
 
 
b83ebfb
 
 
 
 
8c4daf1
3b76971
 
8c4daf1
 
 
 
46fb568
8c4daf1
 
 
 
c8d7214
 
 
 
 
810b825
e62836e
 
07b5d00
e62836e
 
 
 
 
 
 
 
 
b83ebfb
 
 
 
8c4daf1
 
 
 
b83ebfb
8c4daf1
b83ebfb
 
8c4daf1
07b5d00
8c4daf1
 
b83ebfb
07b5d00
 
8c4daf1
07b5d00
 
 
 
556b961
 
b83ebfb
 
07b5d00
 
8c4daf1
 
 
 
 
 
 
07b5d00
b83ebfb
07b5d00
b83ebfb
 
07b5d00
b83ebfb
8c4daf1
 
 
 
b83ebfb
8c4daf1
 
b83ebfb
8c4daf1
 
 
b83ebfb
 
8c4daf1
 
07b5d00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e62836e
8c4daf1
b83ebfb
8c4daf1
 
b83ebfb
5b09d17
 
b83ebfb
8c4daf1
 
8d0d1af
8c4daf1
 
 
 
 
 
 
181019b
07b5d00
 
b83ebfb
181019b
07b5d00
b83ebfb
 
181019b
 
b83ebfb
181019b
 
 
b83ebfb
181019b
 
 
8c4daf1
 
 
07b5d00
8c4daf1
181019b
 
8c4daf1
 
b83ebfb
8c4daf1
b83ebfb
 
07b5d00
 
 
8c4daf1
 
 
b83ebfb
8c4daf1
c7bf29f
8c4daf1
 
 
b83ebfb
8c4daf1
 
 
 
b83ebfb
8c4daf1
 
 
b83ebfb
8c4daf1
 
 
 
 
 
b83ebfb
 
 
 
 
 
 
 
8c4daf1
 
 
 
 
 
 
b83ebfb
8c4daf1
 
 
 
068b52a
b83ebfb
 
 
 
07b5d00
b83ebfb
 
 
8c4daf1
 
 
07b5d00
8c4daf1
 
b83ebfb
 
8c4daf1
 
 
07b5d00
b83ebfb
556b961
b83ebfb
 
8c4daf1
 
 
07b5d00
b83ebfb
556b961
b83ebfb
 
8c4daf1
b83ebfb
 
 
07b5d00
b83ebfb
8c4daf1
b83ebfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b09d17
 
8c4daf1
 
068b52a
8c4daf1
 
07b5d00
e62836e
 
 
 
 
 
07b5d00
e62836e
 
 
 
 
07b5d00
 
 
 
 
 
 
 
 
 
 
 
 
 
e62836e
 
 
 
 
 
 
 
 
 
 
 
07b5d00
 
e62836e
 
 
 
 
 
 
b83ebfb
 
5b09d17
 
 
 
 
b83ebfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e62836e
b83ebfb
8c4daf1
c7bf29f
8c4daf1
07b5d00
8c4daf1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

import os
import json
from io import BytesIO
import base64
from functools import partial

from PIL import Image, ImageOps
import gradio as gr

from makeavid_sd.inference import (
        InferenceUNetPseudo3D,
        jnp,
        SCHEDULERS
)

print(os.environ.get('XLA_PYTHON_CLIENT_PREALLOCATE', 'NotSet'))
print(os.environ.get('XLA_PYTHON_CLIENT_ALLOCATOR', 'NotSet'))

_seen_compilations = set()

_model = InferenceUNetPseudo3D(
        model_path = 'TempoFunk/makeavid-sd-jax',
        dtype = jnp.float16,
        hf_auth_token = os.environ.get('HUGGING_FACE_HUB_TOKEN', None)
)

if _model.failed != False:
    trace = f'```{_model.failed}```'
    with gr.Blocks(title = 'Make-A-Video Stable Diffusion JAX', analytics_enabled = False) as demo:
        exception = gr.Markdown(trace)
    demo.launch()

_examples = []
_expath = 'examples'
for x in sorted(os.listdir(_expath)):
    with open(os.path.join(_expath, x, 'params.json'), 'r') as f:
        ex = json.load(f)
    ex['image_input'] = None
    if os.path.isfile(os.path.join(_expath, x, 'input.png')):
        ex['image_input'] = os.path.join(_expath, x, 'input.png')
    ex['image_output'] = os.path.join(_expath, x, 'output.gif')
    _examples.append(ex)


_output_formats = (
    'webp', 'gif'
)

# gradio is illiterate. type hints make it go poopoo in pantsu.
def generate(
        prompt = 'An elderly man having a great time in the park.',
        neg_prompt = '',
        hint_image = None,
        inference_steps = 20,
        cfg = 15.0,
        cfg_image = 9.0,
        seed = 0,
        fps = 12,
        num_frames = 24,
        height = 512,
        width = 512,
        scheduler_type = 'dpm',
        output_format = 'gif'
) -> str:
    num_frames = min(24, max(2, int(num_frames)))
    inference_steps = min(60, max(2, int(inference_steps)))
    height = min(576, max(256, int(height)))
    width = min(576, max(256, int(width)))
    height = (height // 64) * 64
    width = (width // 64) * 64
    cfg = max(cfg, 1.0)
    cfg_image = max(cfg_image, 1.0)
    fps = min(1000, max(1, int(fps)))
    seed = min(2**32-2, int(seed))
    if seed < 0:
        seed = -seed
    if hint_image is not None:
        if hint_image.mode != 'RGB':
            hint_image = hint_image.convert('RGB')
        if hint_image.size != (width, height):
            hint_image = ImageOps.fit(hint_image, (width, height), method = Image.Resampling.LANCZOS)
    scheduler_type = scheduler_type.lower()
    if scheduler_type not in SCHEDULERS:
        scheduler_type = 'dpm'
    output_format = output_format.lower()
    if output_format not in _output_formats:
        output_format = 'gif'
    mask_image = None
    images = _model.generate(
            prompt = [prompt] * _model.device_count,
            neg_prompt = neg_prompt,
            hint_image = hint_image,
            mask_image = mask_image,
            inference_steps = inference_steps,
            cfg = cfg,
            cfg_image = cfg_image,
            height = height,
            width = width,
            num_frames = num_frames,
            seed = seed,
            scheduler_type = scheduler_type
    )
    _seen_compilations.add((hint_image is None, inference_steps, height, width, num_frames))
    with BytesIO() as buffer:
        images[1].save(
                buffer,
                format = output_format,
                save_all = True,
                append_images = images[2:],
                loop = 0,
                duration = round(1000 / fps),
                allow_mixed = True,
                optimize = True
        )
        data = f'data:image/{output_format};base64,' + base64.b64encode(buffer.getvalue()).decode()
    with BytesIO() as buffer:
        images[-1].save(buffer, format = 'png', optimize = True)
        last_data = f'data:image/png;base64,' + base64.b64encode(buffer.getvalue()).decode()
    with BytesIO() as buffer:
        images[0].save(buffer, format ='png', optimize = True)
        first_data = f'data:image/png;base64,' + base64.b64encode(buffer.getvalue()).decode()
    return data, last_data, first_data

def check_if_compiled(hint_image, inference_steps, height, width, num_frames, scheduler_type, message):
    height = int(height)
    width = int(width)
    inference_steps = int(inference_steps)
    height = (height // 64) * 64
    width = (width // 64) * 64
    if (hint_image is None, inference_steps, height, width, num_frames, scheduler_type) in _seen_compilations:
        return ''
    else:
        return  message

with gr.Blocks(title = 'Make-A-Video Stable Diffusion JAX', analytics_enabled = False) as demo:
    variant = 'panel'
    with gr.Row():
        with gr.Column():
            intro1 = gr.Markdown("""
                        # Make-A-Video Stable Diffusion JAX

                        We have extended a pretrained latent-diffusion inpainting image generation model with **temporal convolutions and attention**.
                        We guide the video generation with a hint image by taking advantage of the extra 5 input channels of the inpainting model.
                        In this demo the hint image can be given by the user, otherwise it is generated by an generative image model.

                        The temporal layers are a port of [Make-A-Video PyTorch](https://github.com/lucidrains/make-a-video-pytorch) to [JAX](https://github.com/google/jax) utilizing [FLAX](https://github.com/google/flax).
                        The convolution is pseudo 3D and seperately convolves accross the spatial dimension in 2D and over the temporal dimension in 1D.
                        Temporal attention is purely self attention and also separately attends to time.

                        Only the new temporal layers have been fine tuned on a dataset of videos themed around dance.
                        The model has been trained for 80 epochs on a dataset of 18,000 Videos with 120 frames each, randomly selecting a 24 frame range from each sample.

                        See model and dataset links in the metadata.

                        Model implementation and training code can be found at <https://github.com/lopho/makeavid-sd-tpu>
            """)
        with gr.Column():
            intro3 = gr.Markdown("""
                        **Please be patient. The model might have to compile with current parameters.**

                        This can take up to 5 minutes on the first run, and 2-3 minutes on later runs.
                        The compilation will be cached and later runs with the same parameters
                        will be much faster.

                        Changes to the following parameters require the model to compile
                        - Number of frames
                        - Width & Height
                        - Inference steps
                        - Input image vs. no input image
                        - Noise scheduler type

                        If you encounter any issues, please report them here: [Space discussions](https://huggingface.co/spaces/TempoFunk/makeavid-sd-jax/discussions) (or DM [@lopho](https://twitter.com/lopho))

                        <small>Leave a ❤️ like if you like. Consider it a dopamine donation at no cost.</small>
            """)

    with gr.Row(variant = variant):
        with gr.Column():
            with gr.Row():
                #cancel_button = gr.Button(value = 'Cancel')
                submit_button = gr.Button(value = 'Make A Video', variant = 'primary')
            prompt_input = gr.Textbox(
                    label = 'Prompt',
                    value = 'They are dancing in the club but everybody is a 3d cg  hairy monster wearing a hairy costume.',
                    interactive = True
            )
            neg_prompt_input = gr.Textbox(
                    label = 'Negative prompt (optional)',
                    value = 'monochrome, saturated',
                    interactive = True
            )
            cfg_input = gr.Slider(
                    label = 'Guidance scale video',
                    minimum = 1.0,
                    maximum = 20.0,
                    step = 0.1,
                    value = 15.0,
                    interactive = True
            )
            cfg_image_input = gr.Slider(
                    label = 'Guidance scale hint (no effect with input image)',
                    minimum = 1.0,
                    maximum = 20.0,
                    step = 0.1,
                    value = 9.0,
                    interactive = True
            )
            seed_input = gr.Number(
                    label = 'Random seed',
                    value = 0,
                    interactive = True,
                    precision = 0
            )
            image_input = gr.Image(
                    label = 'Hint image (optional)',
                    interactive = True,
                    image_mode = 'RGB',
                    type = 'pil',
                    optional = True,
                    source = 'upload'
            )
            inference_steps_input = gr.Slider(
                    label = 'Steps',
                    minimum = 2,
                    maximum = 60,
                    value = 20,
                    step = 1,
                    interactive = True
            )
            num_frames_input = gr.Slider(
                    label = 'Number of frames to generate',
                    minimum = 2,
                    maximum = 24,
                    step = 1,
                    value = 24,
                    interactive = True
            )
            width_input = gr.Slider(
                    label = 'Width',
                    minimum = 256,
                    maximum = 576,
                    step = 64,
                    value = 512,
                    interactive = True
            )
            height_input = gr.Slider(
                    label = 'Height',
                    minimum = 256,
                    maximum = 576,
                    step = 64,
                    value = 512,
                    interactive = True
            )
            scheduler_input = gr.Dropdown(
                    label = 'Noise scheduler',
                    choices = list(SCHEDULERS.keys()),
                    value = 'dpm',
                    interactive = True
            )
            with gr.Row():
                fps_input = gr.Slider(
                        label = 'Output FPS',
                        minimum = 1,
                        maximum = 1000,
                        step = 1,
                        value = 12,
                        interactive = True
                )
                output_format = gr.Dropdown(
                        label = 'Output format',
                        choices = _output_formats,
                        value = 'gif',
                        interactive = True
                )
        with gr.Column():
            #will_trigger = gr.Markdown('')
            patience = gr.Markdown('**Please be patient. The model might have to compile with current parameters.**')
            image_output = gr.Image(
                    label = 'Output',
                    value = 'example.gif',
                    interactive = False
            )
            tips = gr.Markdown('🤫 *Secret tip*: try using the last frame as input for the next generation.')
            with gr.Row():
                last_frame_output = gr.Image(
                        label = 'Last frame',
                        interactive = False
                )
                first_frame_output = gr.Image(
                        label = 'Initial frame',
                        interactive = False
                )
    examples_lst = []
    for x in _examples:
        examples_lst.append([
                x['image_output'],
                x['prompt'],
                x['neg_prompt'],
                x['image_input'],
                x['cfg'],
                x['cfg_image'],
                x['seed'],
                x['fps'],
                x['steps'],
                x['scheduler'],
                x['num_frames'],
                x['height'],
                x['width'],
                x['format']
        ])
    examples = gr.Examples(
            examples = examples_lst,
            inputs = [
                    image_output,
                    prompt_input,
                    neg_prompt_input,
                    image_input,
                    cfg_input,
                    cfg_image_input,
                    seed_input,
                    fps_input,
                    inference_steps_input,
                    scheduler_input,
                    num_frames_input,
                    height_input,
                    width_input,
                    output_format
            ],
            postprocess = False
    )
    #trigger_inputs = [ image_input, inference_steps_input, height_input, width_input, num_frames_input, scheduler_input ]
    #trigger_check_fun = partial(check_if_compiled, message = 'Current parameters need compilation.')
    #height_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
    #width_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
    #num_frames_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
    #image_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
    #inference_steps_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
    #scheduler_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
    submit_button.click(
            fn = generate,
            inputs = [
                    prompt_input,
                    neg_prompt_input,
                    image_input,
                    inference_steps_input,
                    cfg_input,
                    cfg_image_input,
                    seed_input,
                    fps_input,
                    num_frames_input,
                    height_input,
                    width_input,
                    scheduler_input,
                    output_format
            ],
            outputs = [ image_output, last_frame_output, first_frame_output ],
            postprocess = False
    )
    #cancel_button.click(fn = lambda: None, cancels = ev)

demo.queue(concurrency_count = 1, max_size = 8)
demo.launch()