Spaces:
Configuration error
Configuration error
File size: 17,409 Bytes
fd5f698 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 |
import os
import decord
import numpy as np
import random
import json
import torchvision
import torchvision.transforms as T
import torch
from glob import glob
from PIL import Image
from itertools import islice
from pathlib import Path
from .bucketing import sensible_buckets
decord.bridge.set_bridge('torch')
from torch.utils.data import Dataset
from einops import rearrange, repeat
def get_prompt_ids(prompt, tokenizer):
prompt_ids = tokenizer(
prompt,
truncation=True,
padding="max_length",
max_length=tokenizer.model_max_length,
return_tensors="pt",
).input_ids
return prompt_ids
def read_caption_file(caption_file):
with open(caption_file, 'r', encoding="utf8") as t:
return t.read()
def get_text_prompt(
text_prompt: str = '',
fallback_prompt: str= '',
file_path:str = '',
ext_types=['.mp4'],
use_caption=False
):
try:
if use_caption:
if len(text_prompt) > 1: return text_prompt
caption_file = ''
# Use caption on per-video basis (One caption PER video)
for ext in ext_types:
maybe_file = file_path.replace(ext, '.txt')
if maybe_file.endswith(ext_types): continue
if os.path.exists(maybe_file):
caption_file = maybe_file
break
if os.path.exists(caption_file):
return read_caption_file(caption_file)
# Return fallback prompt if no conditions are met.
return fallback_prompt
return text_prompt
except:
print(f"Couldn't read prompt caption for {file_path}. Using fallback.")
return fallback_prompt
def get_video_frames(vr, start_idx, sample_rate=1, max_frames=24):
max_range = len(vr)
frame_number = sorted((0, start_idx, max_range))[1]
frame_range = range(frame_number, max_range, sample_rate)
frame_range_indices = list(frame_range)[:max_frames]
return frame_range_indices
def process_video(vid_path, use_bucketing, w, h, get_frame_buckets, get_frame_batch):
if use_bucketing:
vr = decord.VideoReader(vid_path)
resize = get_frame_buckets(vr)
video = get_frame_batch(vr, resize=resize)
else:
vr = decord.VideoReader(vid_path, width=w, height=h)
video = get_frame_batch(vr)
return video, vr
# https://github.com/ExponentialML/Video-BLIP2-Preprocessor
class VideoJsonDataset(Dataset):
def __init__(
self,
tokenizer = None,
width: int = 256,
height: int = 256,
n_sample_frames: int = 4,
sample_start_idx: int = 1,
frame_step: int = 1,
json_path: str ="",
json_data = None,
vid_data_key: str = "video_path",
preprocessed: bool = False,
use_bucketing: bool = False,
**kwargs
):
self.vid_types = (".mp4", ".avi", ".mov", ".webm", ".flv", ".mjpeg")
self.use_bucketing = use_bucketing
self.tokenizer = tokenizer
self.preprocessed = preprocessed
self.vid_data_key = vid_data_key
self.train_data = self.load_from_json(json_path, json_data)
self.width = width
self.height = height
self.n_sample_frames = n_sample_frames
self.sample_start_idx = sample_start_idx
self.frame_step = frame_step
def build_json(self, json_data):
extended_data = []
for data in json_data['data']:
for nested_data in data['data']:
self.build_json_dict(
data,
nested_data,
extended_data
)
json_data = extended_data
return json_data
def build_json_dict(self, data, nested_data, extended_data):
clip_path = nested_data['clip_path'] if 'clip_path' in nested_data else None
extended_data.append({
self.vid_data_key: data[self.vid_data_key],
'frame_index': nested_data['frame_index'],
'prompt': nested_data['prompt'],
'clip_path': clip_path
})
def load_from_json(self, path, json_data):
try:
with open(path) as jpath:
print(f"Loading JSON from {path}")
json_data = json.load(jpath)
return self.build_json(json_data)
except:
self.train_data = []
print("Non-existant JSON path. Skipping.")
def validate_json(self, base_path, path):
return os.path.exists(f"{base_path}/{path}")
def get_frame_range(self, vr):
return get_video_frames(
vr,
self.sample_start_idx,
self.frame_step,
self.n_sample_frames
)
def get_vid_idx(self, vr, vid_data=None):
frames = self.n_sample_frames
if vid_data is not None:
idx = vid_data['frame_index']
else:
idx = self.sample_start_idx
return idx
def get_frame_buckets(self, vr):
_, h, w = vr[0].shape
width, height = sensible_buckets(self.width, self.height, h, w)
resize = T.transforms.Resize((height, width), antialias=True)
return resize
def get_frame_batch(self, vr, resize=None):
frame_range = self.get_frame_range(vr)
frames = vr.get_batch(frame_range)
video = rearrange(frames, "f h w c -> f c h w")
if resize is not None: video = resize(video)
return video
def process_video_wrapper(self, vid_path):
video, vr = process_video(
vid_path,
self.use_bucketing,
self.width,
self.height,
self.get_frame_buckets,
self.get_frame_batch
)
return video, vr
def train_data_batch(self, index):
# If we are training on individual clips.
if 'clip_path' in self.train_data[index] and \
self.train_data[index]['clip_path'] is not None:
vid_data = self.train_data[index]
clip_path = vid_data['clip_path']
# Get video prompt
prompt = vid_data['prompt']
video, _ = self.process_video_wrapper(clip_path)
prompt_ids = prompt_ids = get_prompt_ids(prompt, self.tokenizer)
return video, prompt, prompt_ids
# Assign train data
train_data = self.train_data[index]
# Get the frame of the current index.
self.sample_start_idx = train_data['frame_index']
# Initialize resize
resize = None
video, vr = self.process_video_wrapper(train_data[self.vid_data_key])
# Get video prompt
prompt = train_data['prompt']
vr.seek(0)
prompt_ids = get_prompt_ids(prompt, self.tokenizer)
return video, prompt, prompt_ids
@staticmethod
def __getname__(): return 'json'
def __len__(self):
if self.train_data is not None:
return len(self.train_data)
else:
return 0
def __getitem__(self, index):
# Initialize variables
video = None
prompt = None
prompt_ids = None
# Use default JSON training
if self.train_data is not None:
video, prompt, prompt_ids = self.train_data_batch(index)
example = {
"pixel_values": (video / 127.5 - 1.0),
"prompt_ids": prompt_ids[0],
"text_prompt": prompt,
'dataset': self.__getname__()
}
return example
class SingleVideoDataset(Dataset):
def __init__(
self,
tokenizer = None,
width: int = 256,
height: int = 256,
n_sample_frames: int = 4,
frame_step: int = 1,
single_video_path: str = "",
single_video_prompt: str = "",
use_caption: bool = False,
use_bucketing: bool = False,
**kwargs
):
self.tokenizer = tokenizer
self.use_bucketing = use_bucketing
self.frames = []
self.index = 1
self.vid_types = (".mp4", ".avi", ".mov", ".webm", ".flv", ".mjpeg")
self.n_sample_frames = n_sample_frames
self.frame_step = frame_step
self.single_video_path = single_video_path
self.single_video_prompt = single_video_prompt
self.width = width
self.height = height
def create_video_chunks(self):
# Create a list of frames separated by sample frames
# [(1,2,3), (4,5,6), ...]
vr = decord.VideoReader(self.single_video_path)
vr_range = range(1, len(vr), self.frame_step)
self.frames = list(self.chunk(vr_range, self.n_sample_frames))
# Delete any list that contains an out of range index.
for i, inner_frame_nums in enumerate(self.frames):
for frame_num in inner_frame_nums:
if frame_num > len(vr):
print(f"Removing out of range index list at position: {i}...")
del self.frames[i]
return self.frames
def chunk(self, it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def get_frame_batch(self, vr, resize=None):
index = self.index
frames = vr.get_batch(self.frames[self.index])
video = rearrange(frames, "f h w c -> f c h w")
if resize is not None: video = resize(video)
return video
def get_frame_buckets(self, vr):
_, h, w = vr[0].shape
width, height = sensible_buckets(self.width, self.height, h, w)
resize = T.transforms.Resize((height, width), antialias=True)
return resize
def process_video_wrapper(self, vid_path):
video, vr = process_video(
vid_path,
self.use_bucketing,
self.width,
self.height,
self.get_frame_buckets,
self.get_frame_batch
)
return video, vr
def single_video_batch(self, index):
train_data = self.single_video_path
self.index = index
if train_data.endswith(self.vid_types):
video, _ = self.process_video_wrapper(train_data)
prompt = self.single_video_prompt
prompt_ids = get_prompt_ids(prompt, self.tokenizer)
return video, prompt, prompt_ids
else:
raise ValueError(f"Single video is not a video type. Types: {self.vid_types}")
@staticmethod
def __getname__(): return 'single_video'
def __len__(self):
return len(self.create_video_chunks())
def __getitem__(self, index):
video, prompt, prompt_ids = self.single_video_batch(index)
example = {
"pixel_values": (video / 127.5 - 1.0),
"prompt_ids": prompt_ids[0],
"text_prompt": prompt,
'dataset': self.__getname__()
}
return example
class ImageDataset(Dataset):
def __init__(
self,
tokenizer = None,
width: int = 256,
height: int = 256,
base_width: int = 256,
base_height: int = 256,
use_caption: bool = False,
image_dir: str = '',
single_img_prompt: str = '',
use_bucketing: bool = False,
fallback_prompt: str = '',
**kwargs
):
self.tokenizer = tokenizer
self.img_types = (".png", ".jpg", ".jpeg", '.bmp')
self.use_bucketing = use_bucketing
self.image_dir = self.get_images_list(image_dir)
self.fallback_prompt = fallback_prompt
self.use_caption = use_caption
self.single_img_prompt = single_img_prompt
self.width = width
self.height = height
def get_images_list(self, image_dir):
if os.path.exists(image_dir):
imgs = [x for x in os.listdir(image_dir) if x.endswith(self.img_types)]
full_img_dir = []
for img in imgs:
full_img_dir.append(f"{image_dir}/{img}")
return sorted(full_img_dir)
return ['']
def image_batch(self, index):
train_data = self.image_dir[index]
img = train_data
try:
img = torchvision.io.read_image(img, mode=torchvision.io.ImageReadMode.RGB)
except:
img = T.transforms.PILToTensor()(Image.open(img).convert("RGB"))
width = self.width
height = self.height
if self.use_bucketing:
_, h, w = img.shape
width, height = sensible_buckets(width, height, w, h)
resize = T.transforms.Resize((height, width), antialias=True)
img = resize(img)
img = repeat(img, 'c h w -> f c h w', f=1)
prompt = get_text_prompt(
file_path=train_data,
text_prompt=self.single_img_prompt,
fallback_prompt=self.fallback_prompt,
ext_types=self.img_types,
use_caption=True
)
prompt_ids = get_prompt_ids(prompt, self.tokenizer)
return img, prompt, prompt_ids
@staticmethod
def __getname__(): return 'image'
def __len__(self):
# Image directory
if os.path.exists(self.image_dir[0]):
return len(self.image_dir)
else:
return 0
def __getitem__(self, index):
img, prompt, prompt_ids = self.image_batch(index)
example = {
"pixel_values": (img / 127.5 - 1.0),
"prompt_ids": prompt_ids[0],
"text_prompt": prompt,
'dataset': self.__getname__()
}
return example
class VideoFolderDataset(Dataset):
def __init__(
self,
tokenizer=None,
width: int = 256,
height: int = 256,
n_sample_frames: int = 16,
fps: int = 8,
path: str = "./data",
fallback_prompt: str = "",
use_bucketing: bool = False,
**kwargs
):
self.tokenizer = tokenizer
self.use_bucketing = use_bucketing
self.fallback_prompt = fallback_prompt
self.video_files = glob(f"{path}/*.mp4")
self.width = width
self.height = height
self.n_sample_frames = n_sample_frames
self.fps = fps
def get_frame_buckets(self, vr):
_, h, w = vr[0].shape
width, height = sensible_buckets(self.width, self.height, h, w)
resize = T.transforms.Resize((height, width), antialias=True)
return resize
def get_frame_batch(self, vr, resize=None):
n_sample_frames = self.n_sample_frames
native_fps = vr.get_avg_fps()
every_nth_frame = max(1, round(native_fps / self.fps))
every_nth_frame = min(len(vr), every_nth_frame)
effective_length = len(vr) // every_nth_frame
if effective_length < n_sample_frames:
n_sample_frames = effective_length
effective_idx = random.randint(0, (effective_length - n_sample_frames))
idxs = every_nth_frame * np.arange(effective_idx, effective_idx + n_sample_frames)
video = vr.get_batch(idxs)
video = rearrange(video, "f h w c -> f c h w")
if resize is not None: video = resize(video)
return video, vr
def process_video_wrapper(self, vid_path):
video, vr = process_video(
vid_path,
self.use_bucketing,
self.width,
self.height,
self.get_frame_buckets,
self.get_frame_batch
)
return video, vr
def get_prompt_ids(self, prompt):
return self.tokenizer(
prompt,
truncation=True,
padding="max_length",
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
).input_ids
@staticmethod
def __getname__(): return 'folder'
def __len__(self):
return len(self.video_files)
def __getitem__(self, index):
video, _ = self.process_video_wrapper(self.video_files[index])
if os.path.exists(self.video_files[index].replace(".mp4", ".txt")):
with open(self.video_files[index].replace(".mp4", ".txt"), "r") as f:
prompt = f.read()
else:
prompt = self.fallback_prompt
prompt_ids = self.get_prompt_ids(prompt)
return {"pixel_values": (video[0] / 127.5 - 1.0), "prompt_ids": prompt_ids[0], "text_prompt": prompt, 'dataset': self.__getname__()}
class CachedDataset(Dataset):
def __init__(self,cache_dir: str = ''):
self.cache_dir = cache_dir
self.cached_data_list = self.get_files_list()
def get_files_list(self):
tensors_list = [f"{self.cache_dir}/{x}" for x in os.listdir(self.cache_dir) if x.endswith('.pt')]
return sorted(tensors_list)
def __len__(self):
return len(self.cached_data_list)
def __getitem__(self, index):
cached_latent = torch.load(self.cached_data_list[index], map_location='cuda:0')
return cached_latent
|