File size: 17,409 Bytes
fd5f698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
import os
import decord
import numpy as np
import random
import json
import torchvision
import torchvision.transforms as T
import torch

from glob import glob
from PIL import Image
from itertools import islice
from pathlib import Path
from .bucketing import sensible_buckets

decord.bridge.set_bridge('torch')

from torch.utils.data import Dataset
from einops import rearrange, repeat

def get_prompt_ids(prompt, tokenizer):
    prompt_ids = tokenizer(
            prompt,
            truncation=True,
            padding="max_length",
            max_length=tokenizer.model_max_length,
            return_tensors="pt",
    ).input_ids

    return prompt_ids

def read_caption_file(caption_file):
        with open(caption_file, 'r', encoding="utf8") as t:
            return t.read()

def get_text_prompt(
        text_prompt: str = '', 
        fallback_prompt: str= '',
        file_path:str = '', 
        ext_types=['.mp4'],
        use_caption=False
    ):
    try:
        if use_caption:
            if len(text_prompt) > 1: return text_prompt
            caption_file = ''
            # Use caption on per-video basis (One caption PER video)
            for ext in ext_types:
                maybe_file = file_path.replace(ext, '.txt')
                if maybe_file.endswith(ext_types): continue
                if os.path.exists(maybe_file): 
                    caption_file = maybe_file
                    break

            if os.path.exists(caption_file):
                return read_caption_file(caption_file)
            
            # Return fallback prompt if no conditions are met.
            return fallback_prompt

        return text_prompt
    except:
        print(f"Couldn't read prompt caption for {file_path}. Using fallback.")
        return fallback_prompt

    
def get_video_frames(vr, start_idx, sample_rate=1, max_frames=24):
    max_range = len(vr)
    frame_number = sorted((0, start_idx, max_range))[1]

    frame_range = range(frame_number, max_range, sample_rate)
    frame_range_indices = list(frame_range)[:max_frames]

    return frame_range_indices

def process_video(vid_path, use_bucketing, w, h, get_frame_buckets, get_frame_batch):
    if use_bucketing:
        vr = decord.VideoReader(vid_path)
        resize = get_frame_buckets(vr)
        video = get_frame_batch(vr, resize=resize)

    else:
        vr = decord.VideoReader(vid_path, width=w, height=h)
        video = get_frame_batch(vr)

    return video, vr

# https://github.com/ExponentialML/Video-BLIP2-Preprocessor
class VideoJsonDataset(Dataset):
    def __init__(
            self,
            tokenizer = None,
            width: int = 256,
            height: int = 256,
            n_sample_frames: int = 4,
            sample_start_idx: int = 1,
            frame_step: int = 1,
            json_path: str ="",
            json_data = None,
            vid_data_key: str = "video_path",
            preprocessed: bool = False,
            use_bucketing: bool = False,
            **kwargs
    ):
        self.vid_types = (".mp4", ".avi", ".mov", ".webm", ".flv", ".mjpeg")
        self.use_bucketing = use_bucketing
        self.tokenizer = tokenizer
        self.preprocessed = preprocessed
        
        self.vid_data_key = vid_data_key
        self.train_data = self.load_from_json(json_path, json_data)

        self.width = width
        self.height = height

        self.n_sample_frames = n_sample_frames
        self.sample_start_idx = sample_start_idx
        self.frame_step = frame_step

    def build_json(self, json_data):
        extended_data = []
        for data in json_data['data']:
            for nested_data in data['data']:
                self.build_json_dict(
                    data, 
                    nested_data, 
                    extended_data
                )
        json_data = extended_data
        return json_data

    def build_json_dict(self, data, nested_data, extended_data):
        clip_path = nested_data['clip_path'] if 'clip_path' in nested_data else None
        
        extended_data.append({
            self.vid_data_key: data[self.vid_data_key],
            'frame_index': nested_data['frame_index'],
            'prompt': nested_data['prompt'],
            'clip_path': clip_path
        })
        
    def load_from_json(self, path, json_data):
        try:
            with open(path) as jpath:
                print(f"Loading JSON from {path}")
                json_data = json.load(jpath)

                return self.build_json(json_data)

        except:
            self.train_data = []
            print("Non-existant JSON path. Skipping.")
            
    def validate_json(self, base_path, path):
        return os.path.exists(f"{base_path}/{path}")

    def get_frame_range(self, vr):
        return get_video_frames(
            vr, 
            self.sample_start_idx, 
            self.frame_step, 
            self.n_sample_frames
        )
    
    def get_vid_idx(self, vr, vid_data=None):
        frames = self.n_sample_frames

        if vid_data is not None:
            idx = vid_data['frame_index']
        else:
            idx = self.sample_start_idx

        return idx

    def get_frame_buckets(self, vr):
        _, h, w = vr[0].shape        
        width, height = sensible_buckets(self.width, self.height, h, w)
        resize = T.transforms.Resize((height, width), antialias=True)

        return resize

    def get_frame_batch(self, vr, resize=None):
        frame_range = self.get_frame_range(vr)
        frames = vr.get_batch(frame_range)
        video = rearrange(frames, "f h w c -> f c h w")

        if resize is not None: video = resize(video)
        return video

    def process_video_wrapper(self, vid_path):
        video, vr = process_video(
                vid_path,
                self.use_bucketing,
                self.width, 
                self.height, 
                self.get_frame_buckets, 
                self.get_frame_batch
            )
        
        return video, vr 

    def train_data_batch(self, index):

        # If we are training on individual clips.
        if 'clip_path' in self.train_data[index] and \
            self.train_data[index]['clip_path'] is not None:

            vid_data = self.train_data[index]

            clip_path = vid_data['clip_path']
            
            # Get video prompt
            prompt = vid_data['prompt']

            video, _ = self.process_video_wrapper(clip_path)

            prompt_ids = prompt_ids = get_prompt_ids(prompt, self.tokenizer)

            return video, prompt, prompt_ids

         # Assign train data
        train_data = self.train_data[index]
        
        # Get the frame of the current index.
        self.sample_start_idx = train_data['frame_index']
        
        # Initialize resize
        resize = None

        video, vr = self.process_video_wrapper(train_data[self.vid_data_key])

        # Get video prompt
        prompt = train_data['prompt']
        vr.seek(0)

        prompt_ids = get_prompt_ids(prompt, self.tokenizer)

        return video, prompt, prompt_ids

    @staticmethod
    def __getname__(): return 'json'

    def __len__(self):
        if self.train_data is not None:
            return len(self.train_data)
        else: 
            return 0

    def __getitem__(self, index):
        
        # Initialize variables
        video = None
        prompt = None
        prompt_ids = None

        # Use default JSON training
        if self.train_data is not None:
            video, prompt, prompt_ids = self.train_data_batch(index)

        example = {
            "pixel_values": (video / 127.5 - 1.0),
            "prompt_ids": prompt_ids[0],
            "text_prompt": prompt,
            'dataset': self.__getname__()
        }

        return example


class SingleVideoDataset(Dataset):
    def __init__(
        self,
            tokenizer = None,
            width: int = 256,
            height: int = 256,
            n_sample_frames: int = 4,
            frame_step: int = 1,
            single_video_path: str = "",
            single_video_prompt: str = "",
            use_caption: bool = False,
            use_bucketing: bool = False,
            **kwargs
    ):
        self.tokenizer = tokenizer
        self.use_bucketing = use_bucketing
        self.frames = []
        self.index = 1

        self.vid_types = (".mp4", ".avi", ".mov", ".webm", ".flv", ".mjpeg")
        self.n_sample_frames = n_sample_frames
        self.frame_step = frame_step

        self.single_video_path = single_video_path
        self.single_video_prompt = single_video_prompt

        self.width = width
        self.height = height
    def create_video_chunks(self):
        # Create a list of frames separated by sample frames
        # [(1,2,3), (4,5,6), ...]
        vr = decord.VideoReader(self.single_video_path)
        vr_range = range(1, len(vr), self.frame_step)

        self.frames = list(self.chunk(vr_range, self.n_sample_frames))

        # Delete any list that contains an out of range index.
        for i, inner_frame_nums in enumerate(self.frames):
            for frame_num in inner_frame_nums:
                if frame_num > len(vr):
                    print(f"Removing out of range index list at position: {i}...")
                    del self.frames[i]

        return self.frames

    def chunk(self, it, size):
        it = iter(it)
        return iter(lambda: tuple(islice(it, size)), ())

    def get_frame_batch(self, vr, resize=None):
        index = self.index
        frames = vr.get_batch(self.frames[self.index])
        video = rearrange(frames, "f h w c -> f c h w")

        if resize is not None: video = resize(video)
        return video

    def get_frame_buckets(self, vr):
        _, h, w = vr[0].shape        
        width, height = sensible_buckets(self.width, self.height, h, w)
        resize = T.transforms.Resize((height, width), antialias=True)

        return resize
    
    def process_video_wrapper(self, vid_path):
        video, vr = process_video(
                vid_path,
                self.use_bucketing,
                self.width, 
                self.height, 
                self.get_frame_buckets, 
                self.get_frame_batch
            )
        
        return video, vr 

    def single_video_batch(self, index):
        train_data = self.single_video_path
        self.index = index

        if train_data.endswith(self.vid_types):
            video, _ = self.process_video_wrapper(train_data)

            prompt = self.single_video_prompt
            prompt_ids = get_prompt_ids(prompt, self.tokenizer)

            return video, prompt, prompt_ids
        else:
            raise ValueError(f"Single video is not a video type. Types: {self.vid_types}")
    
    @staticmethod
    def __getname__(): return 'single_video'

    def __len__(self):
        
        return len(self.create_video_chunks())

    def __getitem__(self, index):

        video, prompt, prompt_ids = self.single_video_batch(index)

        example = {
            "pixel_values": (video / 127.5 - 1.0),
            "prompt_ids": prompt_ids[0],
            "text_prompt": prompt,
            'dataset': self.__getname__()
        }

        return example
    
class ImageDataset(Dataset):
    
    def __init__(
        self,
        tokenizer = None,
        width: int = 256,
        height: int = 256,
        base_width: int = 256,
        base_height: int = 256,
        use_caption:     bool = False,
        image_dir: str = '',
        single_img_prompt: str = '',
        use_bucketing: bool = False,
        fallback_prompt: str = '',
        **kwargs
    ):
        self.tokenizer = tokenizer
        self.img_types = (".png", ".jpg", ".jpeg", '.bmp')
        self.use_bucketing = use_bucketing

        self.image_dir = self.get_images_list(image_dir)
        self.fallback_prompt = fallback_prompt

        self.use_caption = use_caption
        self.single_img_prompt = single_img_prompt

        self.width = width
        self.height = height

    def get_images_list(self, image_dir):
        if os.path.exists(image_dir):
            imgs = [x for x in os.listdir(image_dir) if x.endswith(self.img_types)]
            full_img_dir = []

            for img in imgs: 
                full_img_dir.append(f"{image_dir}/{img}")

            return sorted(full_img_dir)

        return ['']

    def image_batch(self, index):
        train_data = self.image_dir[index]
        img = train_data

        try:
            img = torchvision.io.read_image(img, mode=torchvision.io.ImageReadMode.RGB)
        except:
            img = T.transforms.PILToTensor()(Image.open(img).convert("RGB"))

        width = self.width
        height = self.height

        if self.use_bucketing:
            _, h, w = img.shape
            width, height = sensible_buckets(width, height, w, h)
              
        resize = T.transforms.Resize((height, width), antialias=True)

        img = resize(img) 
        img = repeat(img, 'c h w -> f c h w', f=1)

        prompt = get_text_prompt(
            file_path=train_data,
            text_prompt=self.single_img_prompt,
            fallback_prompt=self.fallback_prompt,
            ext_types=self.img_types,  
            use_caption=True
        )
        prompt_ids = get_prompt_ids(prompt, self.tokenizer)

        return img, prompt, prompt_ids

    @staticmethod
    def __getname__(): return 'image'
    
    def __len__(self):
        # Image directory
        if os.path.exists(self.image_dir[0]):
            return len(self.image_dir)
        else:
            return 0

    def __getitem__(self, index):
        img, prompt, prompt_ids = self.image_batch(index)
        example = {
            "pixel_values": (img / 127.5 - 1.0),
            "prompt_ids": prompt_ids[0],
            "text_prompt": prompt, 
            'dataset': self.__getname__()
        }

        return example

class VideoFolderDataset(Dataset):
    def __init__(
        self,
        tokenizer=None,
        width: int = 256,
        height: int = 256,
        n_sample_frames: int = 16,
        fps: int = 8,
        path: str = "./data",
        fallback_prompt: str = "",
        use_bucketing: bool = False,
        **kwargs
    ):
        self.tokenizer = tokenizer
        self.use_bucketing = use_bucketing

        self.fallback_prompt = fallback_prompt

        self.video_files = glob(f"{path}/*.mp4")

        self.width = width
        self.height = height

        self.n_sample_frames = n_sample_frames
        self.fps = fps

    def get_frame_buckets(self, vr):
        _, h, w = vr[0].shape        
        width, height = sensible_buckets(self.width, self.height, h, w)
        resize = T.transforms.Resize((height, width), antialias=True)

        return resize

    def get_frame_batch(self, vr, resize=None):
        n_sample_frames = self.n_sample_frames
        native_fps = vr.get_avg_fps()
        
        every_nth_frame = max(1, round(native_fps / self.fps))
        every_nth_frame = min(len(vr), every_nth_frame)
        
        effective_length = len(vr) // every_nth_frame
        if effective_length < n_sample_frames:
            n_sample_frames = effective_length

        effective_idx = random.randint(0, (effective_length - n_sample_frames))
        idxs = every_nth_frame * np.arange(effective_idx, effective_idx + n_sample_frames)

        video = vr.get_batch(idxs)
        video = rearrange(video, "f h w c -> f c h w")

        if resize is not None: video = resize(video)
        return video, vr
        
    def process_video_wrapper(self, vid_path):
        video, vr = process_video(
                vid_path,
                self.use_bucketing,
                self.width, 
                self.height, 
                self.get_frame_buckets, 
                self.get_frame_batch
            )
        return video, vr
    
    def get_prompt_ids(self, prompt):
        return self.tokenizer(
            prompt,
            truncation=True,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            return_tensors="pt",
        ).input_ids

    @staticmethod
    def __getname__(): return 'folder'

    def __len__(self):
        return len(self.video_files)

    def __getitem__(self, index):

        video, _ = self.process_video_wrapper(self.video_files[index])

        if os.path.exists(self.video_files[index].replace(".mp4", ".txt")):
            with open(self.video_files[index].replace(".mp4", ".txt"), "r") as f:
                prompt = f.read()
        else:
            prompt = self.fallback_prompt

        prompt_ids = self.get_prompt_ids(prompt)

        return {"pixel_values": (video[0] / 127.5 - 1.0), "prompt_ids": prompt_ids[0], "text_prompt": prompt, 'dataset': self.__getname__()}

class CachedDataset(Dataset):
    def __init__(self,cache_dir: str = ''):
        self.cache_dir = cache_dir
        self.cached_data_list = self.get_files_list()

    def get_files_list(self):
        tensors_list = [f"{self.cache_dir}/{x}" for x in os.listdir(self.cache_dir) if x.endswith('.pt')]
        return sorted(tensors_list)

    def __len__(self):
        return len(self.cached_data_list)

    def __getitem__(self, index):
        cached_latent = torch.load(self.cached_data_list[index], map_location='cuda:0')
        return cached_latent