Spaces:
Sleeping
Sleeping
File size: 2,576 Bytes
d128c4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
import string
import torch
import numpy as np
from nltk.corpus import stopwords
stop_words = set(stopwords.words('english'))
import torch.nn as nn
import pickle
from transformers import BertTokenizer, BertModel, DistilBertTokenizer, DistilBertModel
from sklearn.linear_model import LogisticRegression
EMBEDDING_DIM = 64
VOCAB_SIZE = 203310
embedding_matrix = np.zeros((VOCAB_SIZE, EMBEDDING_DIM))
embedding_layer = torch.nn.Embedding.from_pretrained(torch.FloatTensor(embedding_matrix))
with open('lstm/vocab_to_int.txt', 'rb') as f:
vocab_to_int = pickle.load(f)
class LSTMClassifier(nn.Module):
def __init__(self, embedding_dim: int, hidden_size: int = 32) -> None:
super().__init__()
self.embedding_dim = embedding_dim # создаем эмбединг сайз
self.hidden_size = hidden_size # создаем хидден сайз
self.embedding = embedding_layer # создаем слои модели
self.lstm = nn.LSTM(
input_size=self.embedding_dim,
hidden_size=self.hidden_size,
batch_first=True
)
self.clf = nn.Linear(self.hidden_size, 1)
def forward(self, x):
embedding = self.embedding(x)
_, (h_n, _) = self.lstm(embedding)
out = self.clf(h_n.squeeze())
return out
def data_preprocessing(text: str) -> str:
text = text.lower()
text = ''.join([c for c in text if c not in string.punctuation])# Remove punctuation
text = [word for word in text.split() if word not in stop_words]
text = ' '.join(text)
return text
def padding(review_int: list, seq_len: int) -> np.array:
features = np.zeros((len(review_int), seq_len), dtype = int)
for i, review in enumerate(review_int):
if len(review) <= seq_len:
zeros = list(np.zeros(seq_len - len(review)))
new = zeros + review
else:
new = review[: seq_len]
features[i, :] = np.array(new)
return features
def preprocess_single_string(input_string: str, seq_len: int, vocab_to_int: dict = vocab_to_int) -> list:
preprocessed_string = data_preprocessing(input_string)
result_list = []
for word in preprocessed_string.split():
try:
result_list.append(vocab_to_int[word])
except KeyError as e:
print(f'{e}: not in dictionary!')
result_padded = padding([result_list], seq_len)[0]
return torch.tensor(result_padded)
|