File size: 11,078 Bytes
4ea0ccb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
# -*- coding: utf-8 -*-
"""QuestionGenerator.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1k0AavzSaNYxe36bk65fsXWzC4xSSwo6X
"""
from textwrap3 import wrap
text = """A Lion lay asleep in the forest, his great head resting on his paws. A timid little Mouse came upon him unexpectedly, and in her fright and haste to
get away, ran across the Lion's nose. Roused from his nap, the Lion laid his huge paw angrily on the tiny creature to kill her. "Spare me!" begged
the poor Mouse. "Please let me go and some day I will surely repay you." The Lion was much amused to think that a Mouse could ever help him. But he
was generous and finally let the Mouse go. Some days later, while stalking his prey in the forest, the Lion was caught in the toils of a hunter's
net. Unable to free himself, he filled the forest with his angry roaring. The Mouse knew the voice and quickly found the Lion struggling in the net.
Running to one of the great ropes that bound him, she gnawed it until it parted, and soon the Lion was free. "You laughed when I said I would repay
you," said the Mouse. "Now you see that even a Mouse can help a Lion." """
for wrp in wrap(text, 150):
print (wrp)
print ("\n")
import torch
from transformers import T5ForConditionalGeneration,T5Tokenizer
summary_model = T5ForConditionalGeneration.from_pretrained('t5-base')
summary_tokenizer = T5Tokenizer.from_pretrained('t5-base')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
summary_model = summary_model.to(device)
import random
import numpy as np
def set_seed(seed: int):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
set_seed(42)
import nltk
nltk.download('punkt')
nltk.download('brown')
nltk.download('wordnet')
from nltk.corpus import wordnet as wn
from nltk.tokenize import sent_tokenize
def postprocesstext (content):
final=""
for sent in sent_tokenize(content):
sent = sent.capitalize()
final = final +" "+sent
return final
def summarizer(text,model,tokenizer):
text = text.strip().replace("\n"," ")
text = "summarize: "+text
# print (text)
max_len = 512
encoding = tokenizer.encode_plus(text,max_length=max_len, pad_to_max_length=False,truncation=True, return_tensors="pt").to(device)
input_ids, attention_mask = encoding["input_ids"], encoding["attention_mask"]
outs = model.generate(input_ids=input_ids,
attention_mask=attention_mask,
early_stopping=True,
num_beams=3,
num_return_sequences=1,
no_repeat_ngram_size=2,
min_length = 75,
max_length=300)
dec = [tokenizer.decode(ids,skip_special_tokens=True) for ids in outs]
summary = dec[0]
summary = postprocesstext(summary)
summary= summary.strip()
return summary
summarized_text = summarizer(text,summary_model,summary_tokenizer)
print ("\noriginal Text >>")
for wrp in wrap(text, 150):
print (wrp)
print ("\n")
print ("Summarized Text >>")
for wrp in wrap(summarized_text, 150):
print (wrp)
print ("\n")
total = 10
"""# **Answer Span Extraction (Keywords and Noun Phrases)**"""
import nltk
nltk.download('stopwords')
from nltk.corpus import stopwords
import string
import pke
import traceback
def get_nouns_multipartite(content):
out=[]
try:
# extractor = spacy.load("en_core_web_sm")
extractor = pke.unsupervised.MultipartiteRank()
extractor.load_document(input=content,language='en')
# not contain punctuation marks or stopwords as candidates.
pos = {'PROPN','NOUN'}
#pos = {'PROPN','NOUN'}
stoplist = list(string.punctuation)
stoplist += ['-lrb-', '-rrb-', '-lcb-', '-rcb-', '-lsb-', '-rsb-']
stoplist += stopwords.words('english')
# extractor.candidate_selection(pos=pos, stoplist=stoplist)
extractor.candidate_selection(pos=pos)
# 4. build the Multipartite graph and rank candidates using random walk,
# alpha controls the weight adjustment mechanism, see TopicRank for
# threshold/method parameters.
extractor.candidate_weighting(alpha=1.1,
threshold=0.75,
method='average')
keyphrases = extractor.get_n_best(n=15)
for val in keyphrases:
out.append(val[0])
except:
out = []
traceback.print_exc()
return out
from flashtext import KeywordProcessor
def get_keywords(originaltext,summarytext,total):
keywords = get_nouns_multipartite(originaltext)
print ("keywords unsummarized: ",keywords)
keyword_processor = KeywordProcessor()
for keyword in keywords:
keyword_processor.add_keyword(keyword)
keywords_found = keyword_processor.extract_keywords(summarytext)
keywords_found = list(set(keywords_found))
print ("keywords_found in summarized: ",keywords_found)
important_keywords =[]
for keyword in keywords:
if keyword in keywords_found:
important_keywords.append(keyword)
return important_keywords[:total]
imp_keywords = get_keywords(text,summarized_text,total)
print (imp_keywords)
"""# **Question generation using T5**"""
question_model = T5ForConditionalGeneration.from_pretrained('ramsrigouthamg/t5_squad_v1')
question_tokenizer = T5Tokenizer.from_pretrained('ramsrigouthamg/t5_squad_v1')
question_model = question_model.to(device)
def get_question(context,answer,model,tokenizer):
text = "context: {} answer: {}".format(context,answer)
encoding = tokenizer.encode_plus(text,max_length=384, pad_to_max_length=False,truncation=True, return_tensors="pt").to(device)
input_ids, attention_mask = encoding["input_ids"], encoding["attention_mask"]
outs = model.generate(input_ids=input_ids,
attention_mask=attention_mask,
early_stopping=True,
num_beams=5,
num_return_sequences=1,
no_repeat_ngram_size=2,
max_length=72)
dec = [tokenizer.decode(ids,skip_special_tokens=True) for ids in outs]
Question = dec[0].replace("question:","")
Question= Question.strip()
return Question
for wrp in wrap(summarized_text, 150):
print (wrp)
print ("\n")
for answer in imp_keywords:
ques = get_question(summarized_text,answer,question_model,question_tokenizer)
print (ques)
print (answer.capitalize())
print ("\n")
"""# **UI by using Gradio**"""
import mysql.connector
import datetime;
mydb = mysql.connector.connect(
host="qtechdb-1.cexugk1h8rui.ap-northeast-1.rds.amazonaws.com",
user="admin",
password="F3v2vGWzb8vaniE3nqzi",
database="spring_social"
)
import gradio as gr
context = gr.Textbox(lines=10, placeholder="Enter paragraph/content here...", label="Text")
total = gr.Slider(1,10, value=1,step=1, label="Total Number Of Questions")
subject = gr.Textbox(placeholder="Enter subject/title here...", label="Text")
output = gr.Markdown( label="Question and Answers")
def generate_question_text(context,subject,total):
summary_text = summarizer(context,summary_model,summary_tokenizer)
for wrp in wrap(summary_text, 150):
print (wrp)
np = get_keywords(context,summary_text,total)
print ("\n\nNoun phrases",np)
output="<b style='color:black;'>Answer the following short questions.</b><br><br>"
i=1
for answer in np:
ques = get_question(summary_text,answer,question_model,question_tokenizer)
# output= output + ques + "\n" + "Ans: "+answer.capitalize() + "\n\n"
output = output + "<b style='color:black;'>Q"+ str(i) + ") " + ques + "</b><br>"
# output = output + "<br>"
output = output + "<br>"
i += 1
output = output + "<br><b style='color:black;'>" + "Correct Answer Key:</b><br>"
i=1
for answer in np:
output = output + "<b style='color:green;'>" + "Ans"+ str(i) + ": " +answer.capitalize()+ "</b>"
output = output + "<br>"
i += 1
mycursor = mydb.cursor()
timedate = datetime.datetime.now()
sql = "INSERT INTO shorttexts (subject, input, output, timedate) VALUES (%s,%s, %s,%s)"
val = (subject, context, output, timedate)
mycursor.execute(sql, val)
mydb.commit()
print(mycursor.rowcount, "record inserted.")
return output
iface = gr.Interface(
fn=generate_question_text,
inputs=[context,subject, total],
outputs=output, css=".gradio-container {background-image: url('file=blue.jpg')}",
allow_flagging="manual",flagging_options=["Save Data"])
# iface.launch(debug=True, share=True)
def generate_question(context,subject,total):
summary_text = summarizer(context,summary_model,summary_tokenizer)
for wrp in wrap(summary_text, 150):
print (wrp)
np = get_keywords(context,summary_text,total)
print ("\n\nNoun phrases",np)
output="<b style='color:black;'>Answer the following short questions.</b><br><br>"
i=1
for answer in np:
ques = get_question(summary_text,answer,question_model,question_tokenizer)
# output= output + ques + "\n" + "Ans: "+answer.capitalize() + "\n\n"
output = output + "<b style='color:black;'>Q"+ str(i) + ") " + ques + "</b><br>"
# output = output + "<br>"
output = output + "<br>"
i += 1
output = output + "<br><b style='color:black;'>" + "Correct Answer Key:</b><br>"
i=1
for answer in np:
output = output + "<b style='color:green;'>" + "Ans"+ str(i) + ": " +answer.capitalize()+ "</b>"
output = output + "<br>"
i += 1
return output
import glob
import os.path
import pandas as pd
file =None
def filecreate(x,subject,total):
with open(x.name) as fo:
text = fo.read()
# print(text)
generated = generate_question(text,subject, total)
mycursor = mydb.cursor()
timedate= datetime.datetime.now()
sql = "INSERT INTO shortfiles (subject, input, output, timedate) VALUES (%s,%s, %s,%s)"
val = (subject, text, generated, timedate)
mycursor.execute(sql, val)
mydb.commit()
print(mycursor.rowcount, "record inserted.")
return generated
# filecreate(file,2)
import gradio as gr
context = gr.HTML(label="Text")
file = gr.File()
subject = gr.Textbox(placeholder="Enter subject/title here...", label="Text")
total = gr.Slider(1,10, value=1,step=1, label="Total Number Of Questions")
# output = gr.HTML( label="Question and Answers")
fface = gr.Interface(
fn=filecreate,
inputs=[file,subject,total],
outputs=context,
css=".gradio-container {background-image: url('file=blue.jpg')}",
allow_flagging="manual",flagging_options=["Save Data"])
# fface.launch(debug=True, share=True)
demo = gr.TabbedInterface([iface, fface], ["Text", "Upload File"], css=".gradio-container {background-image: url('file=blue.jpg')}")
demo.launch(debug=True, share=True) |