File size: 6,277 Bytes
2e37cc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import argparse
import itertools
import json
import os
import random
import time
from functools import partial
import torch
import requests
from tqdm import tqdm
from transformers import AutoProcessor, Qwen2AudioForConditionalGeneration
from transformers.pipelines.audio_utils import ffmpeg_read


ds_collections = {
    'airbench_level3': {'path': 'chat/airbench-level-3.jsonl'}
}


class AudioChatDataset(torch.utils.data.Dataset):

    def __init__(self, ds):
        path = ds['path']
        self.datas = open(path).readlines()

    def __len__(self):
        return len(self.datas)

    def __getitem__(self, idx):
        data = json.loads(self.datas[idx].strip())
        audio = data['audio']
        data_idx = data['id']
        query = data['query']

        return {
            'audio': audio,
            'data_idx': data_idx,
            'query': query,
        }

def read_audio(audio_path):
    if audio_path.startswith("http://") or audio_path.startswith("https://"):
        # We need to actually check for a real protocol, otherwise it's impossible to use a local file
        # like http_huggingface_co.png
        inputs = requests.get(audio_path).content
    else:
        with open(audio_path, "rb") as f:
            inputs = f.read()
    return inputs

def collate_fn(inputs, processor):
    text_list = []
    for _ in inputs:
        query = _['query']
        conversation = [
            {'role': 'system', 'content': 'You are a helpful assistant.'},
            {'role': 'user', 'content': query}
        ]
        text = processor.tokenizer.apply_chat_template(
            conversation,
            add_generation_prompt=True,
            return_tensors='pt',
            tokenize=False
        )
        text_list.append(text)

    audio_path = [_['audio'] for _ in inputs]
    data_idxs = [_['data_idx'] for _ in inputs]
    input_audios = [ffmpeg_read(read_audio(_['audio']), sampling_rate=processor.feature_extractor.sampling_rate) for _ in inputs]
    inputs = processor(text=text_list, audios=input_audios, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt", padding=True)
    return inputs, audio_path, data_idxs


class InferenceSampler(torch.utils.data.sampler.Sampler):

    def __init__(self, size):
        self._size = int(size)
        assert size > 0
        self._rank = torch.distributed.get_rank()
        self._world_size = torch.distributed.get_world_size()
        self._local_indices = self._get_local_indices(size, self._world_size,
                                                      self._rank)

    @staticmethod
    def _get_local_indices(total_size, world_size, rank):
        shard_size = total_size // world_size
        left = total_size % world_size
        shard_sizes = [shard_size + int(r < left) for r in range(world_size)]

        begin = sum(shard_sizes[:rank])
        end = min(sum(shard_sizes[:rank + 1]), total_size)
        return range(begin, end)

    def __iter__(self):
        yield from self._local_indices

    def __len__(self):
        return len(self._local_indices)


if __name__ == '__main__':

    parser = argparse.ArgumentParser()
    parser.add_argument('--checkpoint', type=str, default='Qwen/Qwen2-Audio-7B-Instruct')
    parser.add_argument('--dataset', type=str, default='')
    parser.add_argument('--batch-size', type=int, default=1)
    parser.add_argument('--num-workers', type=int, default=1)
    parser.add_argument('--seed', type=int, default=0)
    args = parser.parse_args()

    torch.distributed.init_process_group(
        backend='nccl',
        world_size=int(os.getenv('WORLD_SIZE', '1')),
        rank=int(os.getenv('RANK', '0')),
    )

    torch.cuda.set_device(int(os.getenv('LOCAL_RANK', 0)))

    model = Qwen2AudioForConditionalGeneration.from_pretrained(
        args.checkpoint, device_map='cuda', torch_dtype='auto', trust_remote_code=True).eval()

    processor = AutoProcessor.from_pretrained(args.checkpoint)
    processor.tokenizer.padding_side = 'left'

    random.seed(args.seed)
    dataset = AudioChatDataset(
        ds=ds_collections[args.dataset],
    )
    data_loader = torch.utils.data.DataLoader(
        dataset=dataset,
        sampler=InferenceSampler(len(dataset)),
        batch_size=args.batch_size,
        num_workers=args.num_workers,
        pin_memory=True,
        drop_last=False,
        collate_fn=partial(collate_fn, processor=processor),
    )


    idxs = []
    rets = []
    audio_paths = []
    for _, (inputs, audio_path, data_idxs) in tqdm(enumerate(data_loader)):
        inputs['input_ids'] = inputs['input_ids'].to('cuda')
        output_ids = model.generate(**inputs, max_new_tokens=256, min_new_tokens=1,do_sample=False)
        output_ids = output_ids[:, inputs.input_ids.size(1):]
        output = processor.batch_decode(output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
        rets.extend(output)
        audio_paths.extend(audio_path)
        idxs.extend(data_idxs)

    torch.distributed.barrier()

    world_size = torch.distributed.get_world_size()
    merged_idxs = [None for _ in range(world_size)]
    merged_responses = [None for _ in range(world_size)]
    merged_audio_paths = [None for _ in range(world_size)]
    torch.distributed.all_gather_object(merged_idxs, idxs)
    torch.distributed.all_gather_object(merged_responses, rets)
    torch.distributed.all_gather_object(merged_audio_paths, audio_paths)

    merged_idxs = [_ for _ in itertools.chain.from_iterable(merged_idxs)]
    merged_audio_paths = [_ for _ in itertools.chain.from_iterable(merged_audio_paths)]
    merged_responses = [
        _ for _ in itertools.chain.from_iterable(merged_responses)
    ]

    if torch.distributed.get_rank() == 0:
        print(f"Evaluating {args.dataset} ...")

        results = []
        for idx, response, audio_path in zip(merged_idxs, merged_responses, merged_audio_paths):
            results.append({
                'idx': idx,
                'response': response,
                'audio_path': audio_path,
            })
        time_prefix = time.strftime('%y%m%d%H%M%S', time.localtime())
        results_file = f'{args.dataset}_{time_prefix}.json'
        json.dump(results, open(results_file, 'w'))

    torch.distributed.barrier()