Spaces:
Paused
Paused
File size: 8,702 Bytes
85982c7 7be1664 b9cf639 f6cbd41 7be1664 8d621ae 7be1664 b2497fe 7be1664 b2497fe 7be1664 b2497fe 7be1664 a8683e1 92fd8f9 b2497fe 8586d5d b2497fe 7be1664 b2497fe 92fd8f9 b9cf639 7be1664 b2497fe 7be1664 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
# from optimum.bettertransformer import BetterTransformer
from tokenization_yi import YiTokenizer
import torch
import os
import bitsandbytes
import gradio as gr
import sentencepiece
DESCRIPTION = """
# Welcome to Tonic'sYI-6B-200K
You can use this Space to test out the current model [01-ai/Yi-6B-200K](https://huggingface.co/01-ai/Yi-6B-200K)
You can also use YI-200 by cloning this space. Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic1Tonics-Yi-6B-200K/?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
Join us : TeamTonic is always making cool demos! Join our active builder's community on Discord: [Discord](https://discord.gg/nXx5wbX9) On Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On Github: [Polytonic](https://github.com/tonic-ai) & contribute to [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
"""
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:126'
MAX_MAX_NEW_TOKENS = 160000
DEFAULT_MAX_NEW_TOKENS = 20000
MAX_INPUT_TOKEN_LENGTH = 160000
device = "cuda" if torch.cuda.is_available() else "cpu"
model_name = "01-ai/Yi-6B-200K"
# tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
tokenizer = YiTokenizer(vocab_file="./tokenizer.model")
model = transformers.AutoModelForCausalLM.from_pretrained(model_name,
device_map="auto",
torch_dtype=torch.bfloat16,
load_in_4bit=True,
trust_remote_code=True
)
# Load the model and tokenizer using transformers
# model = AutoModelForCausalLM.from_pretrained("01-ai/Yi-6B-200K", trust_remote_code=True)
# model = BetterTransformer.transform(model)
def run(message, chat_history, max_new_tokens=20000, temperature=1.5, top_p=0.9, top_k=900):
prompt = get_prompt(message, chat_history)
# Encode the prompt to tensor
input_ids = tokenizer.encode(prompt, return_tensors='pt')
# Move input_ids to the same device as the model
input_ids = input_ids.to(model.device)
# Generate a response using the model with adjusted parameters
response_ids = model.generate(
input_ids,
max_length=max_new_tokens + input_ids.shape[1],
temperature=temperature, # Controls randomness. Lower values make text more deterministic.
top_p=top_p, # Nucleus sampling: higher values allow more diversity.
top_k=top_k, # Top-k sampling: limits the number of top tokens considered.
pad_token_id=tokenizer.eos_token_id,
do_sample=True # Enable sampling-based generation
)
# Decode the response
response = tokenizer.decode(response_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
return response
def get_prompt(message, chat_history):
texts = []
do_strip = False
for user_input, response in chat_history:
user_input = user_input.strip() if do_strip else user_input
do_strip = True
texts.append(f" {response.strip()} {user_input} ")
message = message.strip() if do_strip else message
texts.append(f"{message}")
return ''.join(texts)
def clear_and_save_textbox(message): return '', message
def display_input(message, history=[]):
history.append((message, ''))
return history
def delete_prev_fn(history=[]):
try:
message, _ = history.pop()
except IndexError:
message = ''
return history, message or ''
def generate(message, history_with_input, max_new_tokens, temperature, top_p, top_k):
if int(max_new_tokens) > MAX_MAX_NEW_TOKENS:
raise ValueError
history = history_with_input[:-1]
response = run(message, history, max_new_tokens, temperature, top_p, top_k)
yield history + [(message, response)]
def process_example(message):
generator = generate(message, [], 4056, 1.9, 0.95, 900)
for x in generator:
pass
return '', x
def check_input_token_length(message, chat_history):
input_token_length = len(message) + len(chat_history)
if input_token_length > MAX_INPUT_TOKEN_LENGTH:
raise gr.Error(f"The accumulated input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH}). Clear your chat history and try again.")
with gr.Blocks(theme='ParityError/Anime') as demo:
gr.Markdown(DESCRIPTION)
with gr.Group():
chatbot = gr.Chatbot(label='TonicYi-30B-200K')
with gr.Row():
textbox = gr.Textbox(
container=False,
show_label=False,
placeholder='As the dawn approached, they leant in and said',
scale=10
)
submit_button = gr.Button('Submit', variant='primary', scale=1, min_width=0)
with gr.Row():
retry_button = gr.Button('Retry', variant='secondary')
undo_button = gr.Button('Undo', variant='secondary')
clear_button = gr.Button('Clear', variant='secondary')
saved_input = gr.State()
with gr.Accordion(label='Advanced options', open=False):
# system_prompt = gr.Textbox(label='System prompt', value=DEFAULT_SYSTEM_PROMPT, lines=5, interactive=False)
max_new_tokens = gr.Slider(label='Max New Tokens', minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label='Temperature', minimum=0.1, maximum=2.0, step=0.1, value=0.1)
top_p = gr.Slider(label='Top-P (nucleus sampling)', minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label='Top-K', minimum=1, maximum=1000, step=1, value=10)
textbox.submit(
fn=clear_and_save_textbox,
inputs=textbox,
outputs=[textbox, saved_input],
api_name=False,
queue=False,
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=False,
queue=False,
).then(
fn=check_input_token_length,
inputs=[saved_input, chatbot],
api_name=False,
queue=False,
).success(
fn=generate,
inputs=[
saved_input,
chatbot,
max_new_tokens,
temperature,
top_p,
top_k,
],
outputs=chatbot,
api_name="Generate",
)
button_event_preprocess = submit_button.click(
fn=clear_and_save_textbox,
inputs=textbox,
outputs=[textbox, saved_input],
api_name=False,
queue=False,
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=False,
queue=False,
).then(
fn=check_input_token_length,
inputs=[saved_input, chatbot],
api_name=False,
queue=False,
).success(
fn=generate,
inputs=[
saved_input,
chatbot,
max_new_tokens,
temperature,
top_p,
top_k,
],
outputs=chatbot,
api_name="Cgenerate",
)
retry_button.click(
fn=delete_prev_fn,
inputs=chatbot,
outputs=[chatbot, saved_input],
api_name=False,
queue=False,
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=False,
queue=False,
).then(
fn=generate,
inputs=[
saved_input,
chatbot,
max_new_tokens,
temperature,
top_p,
top_k,
],
outputs=chatbot,
api_name=False,
)
undo_button.click(
fn=delete_prev_fn,
inputs=chatbot,
outputs=[chatbot, saved_input],
api_name=False,
queue=False,
).then(
fn=lambda x: x,
inputs=[saved_input],
outputs=textbox,
api_name=False,
queue=False,
)
clear_button.click(
fn=lambda: ([], ''),
outputs=[chatbot, saved_input],
queue=False,
api_name=False,
)
demo.queue(max_size=5).launch(show_api=True) |