File size: 5,780 Bytes
b929c63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88ee7ec
b929c63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import os
import copy
import re
import secrets
from pathlib import Path
from pydub import AudioSegment

# Initialize the model and tokenizer
torch.manual_seed(420)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-Audio-Chat", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-Audio-Chat", device_map="cuda", trust_remote_code=True).eval()

def _parse_text(text):
    lines = text.split("\n")
    lines = [line for line in lines if line != ""]
    count = 0
    for i, line in enumerate(lines):
        if "```" in line:
            count += 1
            items = line.split("`")
            if count % 2 == 1:
                lines[i] = f'<pre><code class="language-{items[-1]}">'
            else:
                lines[i] = f"<br></code></pre>"
        else:
            if i > 0:
                if count % 2 == 1:
                    line = line.replace("`", r"\`")
                    line = line.replace("<", "&lt;")
                    line = line.replace(">", "&gt;")
                    line = line.replace(" ", "&nbsp;")
                    line = line.replace("*", "&ast;")
                    line = line.replace("_", "&lowbar;")
                    line = line.replace("-", "&#45;")
                    line = line.replace(".", "&#46;")
                    line = line.replace("!", "&#33;")
                    line = line.replace("(", "&#40;")
                    line = line.replace(")", "&#41;")
                    line = line.replace("$", "&#36;")
                lines[i] = "<br>" + line
    text = "".join(lines)
    return text
    
def predict(_chatbot, task_history):
    if not task_history:
        return _chatbot

    query = task_history[-1][0]
    history_cp = copy.deepcopy(task_history)
    history_filter = []
    audio_idx = 1
    pre = ""
    last_audio = None

    for i, (q, a) in enumerate(history_cp):
        if isinstance(q, (tuple, list)):
            last_audio = q[0]
            q = f'Audio {audio_idx}: <audio>{q[0]}</audio>'
            pre += q + '\n'
            audio_idx += 1
        else:
            pre += q
            history_filter.append((pre, a))
            pre = ""

    history, message = history_filter[:-1], history_filter[-1][0]
    response, history = model.chat(tokenizer, message, history=history)

    ts_pattern = r"<\|\d{1,2}\.\d+\|>"
    all_time_stamps = re.findall(ts_pattern, response)
    if (len(all_time_stamps) > 0) and (len(all_time_stamps) % 2 ==0) and last_audio:
        ts_float = [ float(t.replace("<|","").replace("|>","")) for t in all_time_stamps]
        ts_float_pair = [ts_float[i:i + 2] for i in range(0,len(all_time_stamps),2)]
        # θ―»ε–ιŸ³ι’‘ζ–‡δ»Ά
        format = os.path.splitext(last_audio)[-1].replace(".","")
        audio_file = AudioSegment.from_file(last_audio, format=format)
        chat_response_t = response.replace("<|", "").replace("|>", "")
        chat_response = chat_response_t
        temp_dir = secrets.token_hex(20)
        temp_dir = Path(uploaded_file_dir) / temp_dir
        temp_dir.mkdir(exist_ok=True, parents=True)
            # ζˆͺε–ιŸ³ι’‘ζ–‡δ»Ά
        for pair in ts_float_pair:
            audio_clip = audio_file[pair[0] * 1000: pair[1] * 1000]
                # δΏε­˜ιŸ³ι’‘ζ–‡δ»Ά
            name = f"tmp{secrets.token_hex(5)}.{format}"
            filename = temp_dir / name
            audio_clip.export(filename, format=format)
            _chatbot[-1] = (_parse_text(query), chat_response)
            _chatbot.append((None, (str(filename),)))
    else:
        _chatbot[-1] = (_parse_text(query), response)
        full_response = _parse_text(response)
        task_history[-1] = (query, full_response)
        print("Qwen-Audio-Chat: " + _parse_text(full_response))
        return _chatbot

def regenerate(_chatbot, task_history):
    if not task_history:
        return _chatbot
    item = task_history[-1]
    if item[1] is None:
        return _chatbot
    task_history[-1] = (item[0], None)
    chatbot_item = _chatbot.pop(-1)
    if chatbot_item[0] is None:
            _chatbot[-1] = (_chatbot[-1][0], None)
    else:
        _chatbot.append((chatbot_item[0], None))
    return predict(_chatbot, task_history)

def add_text(history, task_history, text):
    history = history + [(_parse_text(text), None)]
    task_history = task_history + [(text, None)]
    return history, task_history, ""

def add_file(history, task_history, file):
    history = history + [((file.name,), None)]
    task_history = task_history + [((file.name,), None)]
    return history, task_history

def add_mic(history, task_history, file):
    if file is None:
        return history, task_history
    os.rename(file, file + '.wav')
    print("add_mic file:", file)
    print("add_mic history:", history)
    print("add_mic task_history:", task_history)
    # history = history + [((file.name,), None)]
    # task_history = task_history + [((file.name,), None)]
    task_history = task_history + [((file + '.wav',), None)]
    history = history + [((file + '.wav',), None)]
    print("task_history", task_history)
    return history, task_history

def reset_user_input():
    return gr.update(value="")

def reset_state(task_history):
    task_history.clear()
    return []
        
iface = gr.Interface(
    fn=predict,
    inputs=[
        gr.inputs.Audio(label="Audio Input"),
        gr.inputs.Textbox(label="Text Query"),
        gr.State()  
    ],
    outputs=[
        "text",  
        gr.State()  
    ],
    title="Audio-Text Interaction Model",
    description="This model can process an audio input along with a text query and provide a response.",
    theme="default",
    allow_flagging="never"
)

iface.launch()