Spaces:
Runtime error
Runtime error
File size: 18,711 Bytes
7d88a24 be980dd 722ecec 579282f fd10b6c 39dff4c 28b69ba be980dd adc6d8b d22abe6 3eb706b ad65b09 7dc22ca c5fff41 56811e2 a31fde9 7dc22ca a31fde9 abe552f a31fde9 f86940b 215f2d8 874e011 215f2d8 874e011 215f2d8 7bd7744 11abe35 7dc22ca c540f1a c1f218b 74f3ed7 be980dd c1f218b be980dd 219ee2d 712a316 be980dd 52bb2a3 be980dd ad65b09 be980dd ad65b09 722ecec ad65b09 b67fe1a ff4e34f ad65b09 94ec186 ad65b09 ff4e34f ad65b09 ff4e34f ad65b09 adc6d8b ad65b09 ff4e34f c6ddc86 3661992 28b69ba 4854a72 176b9ce 4854a72 176b9ce d354d71 32cbfb2 176b9ce d50b1d6 176b9ce 4854a72 176b9ce d354d71 32cbfb2 176b9ce 4854a72 bb31795 176b9ce 4854a72 176b9ce 4854a72 176b9ce 4854a72 f2e5be8 722ecec 7bc7c93 722ecec ff4e34f 722ecec 75cae88 78cfc04 75cae88 745515a 75cae88 722ecec c4c3c57 2f101a3 ff4e34f 2f101a3 b510b99 2f101a3 b510b99 ff4e34f b510b99 8eb3297 215f2d8 b510b99 215f2d8 b510b99 5bdde3a d22abe6 722ecec e8d566d 6dbdc81 4f201ed 6dbdc81 e8d566d 767253a c4c3c57 767253a c4c3c57 767253a 5225bb2 e8d566d 4725fd5 6566912 d20cfe2 8eb3297 83ba519 a31fde9 e8d566d 68403cb 3eb706b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
# Welcome to Team Tonic's MultiMed
from gradio_client import Client
import os
import numpy as np
import base64
import gradio as gr
import requests
import json
import dotenv
from scipy.io.wavfile import write
import PIL
from openai import OpenAI
import time
from PIL import Image
import io
import hashlib
import datetime
dotenv.load_dotenv()
seamless_client = Client("facebook/seamless_m4t")
HuggingFace_Token = os.getenv("HuggingFace_Token")
def check_hallucination(assertion,citation):
API_URL = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model"
headers = {"Authorization": f"Bearer {HuggingFace_Token}"}
payload = {"inputs" : f"{assertion} [SEP] {citation}"}
response = requests.post(API_URL, headers=headers, json=payload,timeout=120)
output = response.json()
output = output[0][0]["score"]
return f"**hullicination score:** {output}"
# Define the API parameters
VAPI_URL = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model"
headers = {"Authorization": f"Bearer {HuggingFace_Token}"}
# Function to query the API
def query(payload):
response = requests.post(VAPI_URL, headers=headers, json=payload)
return response.json()
# Function to evaluate hallucination
def evaluate_hallucination(input1, input2):
# Combine the inputs
combined_input = f"{input1}. {input2}"
# Make the API call
output = query({"inputs": combined_input})
# Extract the score from the output
score = output[0][0]['score']
# Generate a label based on the score
if score < 0.5:
label = f"🔴 High risk. Score: {score:.2f}"
else:
label = f"🟢 Low risk. Score: {score:.2f}"
return label
def process_speech(input_language, audio_input):
"""
processing sound using seamless_m4t
"""
if audio_input is None :
return "no audio or audio did not save yet \nplease try again ! "
print(f"audio : {audio_input}")
print(f"audio type : {type(audio_input)}")
out = seamless_client.predict(
"S2TT",
"file",
None,
audio_input, #audio_name
"",
input_language,# source language
"English",# target language
api_name="/run",
)
out = out[1] # get the text
try :
return f"{out}"
except Exception as e :
return f"{e}"
def decode_image(encoded_image: str) -> Image:
decoded_bytes = base64.b64decode(encoded_image.encode("utf-8"))
buffer = io.BytesIO(decoded_bytes)
image = Image.open(buffer)
return image
def encode_image(image: Image.Image, format: str = "PNG") -> str:
with io.BytesIO() as buffer:
image.save(buffer, format=format)
encoded_image = base64.b64encode(buffer.getvalue()).decode("utf-8")
return encoded_image
def get_conv_log_filename():
t = datetime.datetime.now()
name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
return name
def get_conv_image_dir():
name = os.path.join(LOGDIR, "images")
os.makedirs(name, exist_ok=True)
return name
def get_image_name(image, image_dir=None):
buffer = io.BytesIO()
image.save(buffer, format="PNG")
image_bytes = buffer.getvalue()
md5 = hashlib.md5(image_bytes).hexdigest()
if image_dir is not None:
image_name = os.path.join(image_dir, md5 + ".png")
else:
image_name = md5 + ".png"
return image_name
def resize_image(image, max_size):
width, height = image.size
aspect_ratio = float(width) / float(height)
if width > height:
new_width = max_size
new_height = int(new_width / aspect_ratio)
else:
new_height = max_size
new_width = int(new_height * aspect_ratio)
resized_image = image.resize((new_width, new_height))
return resized_image
def process_image(image_input, text_input):
# Resize the image if needed
max_image_size = 1024 # You can adjust this size
image = resize_image(image_input, max_image_size)
# Encode the image to base64
base64_image_str = encode_image(image)
# Prepare the payload for the HTTP request
payload = {
"content": [
{
"prompt": text_input,
"image": base64_image_str,
}
],
"token": "sk-OtterHD", # Replace with your actual token
}
# Specify the URL for the HTTP request
url = "https://ensures-picture-choices-labels.trycloudflare.com/app/otter"
headers = {"Content-Type": "application/json"}
# Make the HTTP request
response = requests.post(url, headers=headers, data=json.dumps(payload))
if response.status_code == 200:
results = response.json()
return results["result"]
else:
return f"Error: {response.status_code}, {response.text}"
def query_vectara(text):
user_message = text
# Read authentication parameters from the .env file
CUSTOMER_ID = os.getenv('CUSTOMER_ID')
CORPUS_ID = os.getenv('CORPUS_ID')
API_KEY = os.getenv('API_KEY')
# Define the headers
api_key_header = {
"customer-id": CUSTOMER_ID,
"x-api-key": API_KEY
}
# Define the request body in the structure provided in the example
request_body = {
"query": [
{
"query": user_message,
"queryContext": "",
"start": 1,
"numResults": 50,
"contextConfig": {
"charsBefore": 0,
"charsAfter": 0,
"sentencesBefore": 2,
"sentencesAfter": 2,
"startTag": "%START_SNIPPET%",
"endTag": "%END_SNIPPET%",
},
"rerankingConfig": {
"rerankerId": 272725718,
"mmrConfig": {
"diversityBias": 0.35
}
},
"corpusKey": [
{
"customerId": CUSTOMER_ID,
"corpusId": CORPUS_ID,
"semantics": 0,
"metadataFilter": "",
"lexicalInterpolationConfig": {
"lambda": 0
},
"dim": []
}
],
"summary": [
{
"maxSummarizedResults": 5,
"responseLang": "auto",
"summarizerPromptName": "vectara-summary-ext-v1.2.0"
}
]
}
]
}
# Make the API request using Gradio
response = requests.post(
"https://api.vectara.io/v1/query",
json=request_body, # Use json to automatically serialize the request body
verify=True,
headers=api_key_header
)
if response.status_code == 200:
query_data = response.json()
if query_data:
sources_info = []
# Extract the summary.
summary = query_data['responseSet'][0]['summary'][0]['text']
# Iterate over all response sets
for response_set in query_data.get('responseSet', []):
# Extract sources
# Limit to top 5 sources.
for source in response_set.get('response', [])[:5]:
source_metadata = source.get('metadata', [])
source_info = {}
for metadata in source_metadata:
metadata_name = metadata.get('name', '')
metadata_value = metadata.get('value', '')
if metadata_name == 'title':
source_info['title'] = metadata_value
elif metadata_name == 'author':
source_info['author'] = metadata_value
elif metadata_name == 'pageNumber':
source_info['page number'] = metadata_value
if source_info:
sources_info.append(source_info)
result = {"summary": summary, "sources": sources_info}
return f"{json.dumps(result, indent=2)}"
else:
return "No data found in the response."
else:
return f"Error: {response.status_code}"
def convert_to_markdown(vectara_response_json):
vectara_response = json.loads(vectara_response_json)
if vectara_response:
summary = vectara_response.get('summary', 'No summary available')
sources_info = vectara_response.get('sources', [])
# Format the summary as Markdown
markdown_summary = f' {summary}\n\n'
# Format the sources as a numbered list
markdown_sources = ""
for i, source_info in enumerate(sources_info):
author = source_info.get('author', 'Unknown author')
title = source_info.get('title', 'Unknown title')
page_number = source_info.get('page number', 'Unknown page number')
markdown_sources += f"{i+1}. {title} by {author}, Page {page_number}\n"
return f"{markdown_summary}**Sources:**\n{markdown_sources}"
else:
return "No data found in the response."
# Main function to handle the Gradio interface logic
def process_summary_with_openai(summary):
"""
This function takes a summary text as input and processes it with OpenAI's GPT model.
"""
try:
# Ensure that the OpenAI client is properly initialized
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
# Create the prompt for OpenAI's completion
prompt = "You are clinical consultant discussion training cases with students at TonicUniversity. Assess and describe the proper options in minute detail. Propose a course of action based on your assessment. You will recieve a summary assessment in a language, respond ONLY in English. Exclude any other commentary:"
# Call the OpenAI API with the prompt and the summary
completion = client.chat.completions.create(
model="gpt-4-1106-preview", # Make sure to use the correct model name
messages=[
{"role": "system", "content": prompt},
{"role": "user", "content": summary}
]
)
# Extract the content from the completion
final_summary = completion.choices[0].message.content
return final_summary
except Exception as e:
return str(e)
def process_and_query(input_language=None,audio_input=None,image_input=None,text_input=None):
# Initialize the combined text
combined_text = ""
try:
# Initialize the combined text
combined_text = ""
# Process text input
if text_input is not None:
# Augment the prompt before feeding it to Vectara
combined_text = "the user asks the following to his health adviser: " + text_input
# Process audio input
if audio_input is not None:
audio_text = process_speech(input_language, audio_input)
combined_text += "\n" + audio_text
# Process image input
if image_input is not None:
# Use the current combined text (which includes the processed text input) for image processing
image_text = process_image(image_input, combined_text)
combined_text += "\n" + image_text
# Use the text to query Vectara
vectara_response_json = query_vectara(combined_text)
# Convert the Vectara response to Markdown
markdown_output = convert_to_markdown(vectara_response_json)
# Process the summary with OpenAI
final_response = process_summary_with_openai(markdown_output)
# Evaluate hallucination
hallucination_label = evaluate_hallucination(final_response, markdown_output)
# Return the processed summary along with the hallucination label
return final_response, hallucination_label
except Exception as e:
# Return a default value for both outputs in case of an exception
return str(e), "Error in processing"
welcome_message = """
# 👋🏻Welcome to ⚕🗣️😷MultiMed - Access Chat ⚕🗣️😷
### How To Use ⚕🗣️😷MultiMed⚕:
#### 🗣️📝Interact with ⚕🗣️😷MultiMed⚕ in any language using audio or text!
#### 🗣️📝 This is an educational and accessible conversational tool to improve wellness and sanitation in support of public health.
#### 📚🌟💼 The knowledge base is composed of publicly available medical and health sources in multiple languages. We also used [Kelvalya/MedAware](https://huggingface.co/datasets/keivalya/MedQuad-MedicalQnADataset) that we processed and converted to HTML. The quality of the answers depends on the quality of the dataset, so if you want to see some data represented here, do [get in touch](https://discord.gg/GWpVpekp). You can also use 😷MultiMed⚕️ on your own data & in your own way by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/TeamTonic/MultiMed?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
#### Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)"
"""
languages = [
"Afrikaans",
"Amharic",
"Modern Standard Arabic",
"Moroccan Arabic",
"Egyptian Arabic",
"Assamese",
"Asturian",
"North Azerbaijani",
"Belarusian",
"Bengali",
"Bosnian",
"Bulgarian",
"Catalan",
"Cebuano",
"Czech",
"Central Kurdish",
"Mandarin Chinese",
"Welsh",
"Danish",
"German",
"Greek",
"English",
"Estonian",
"Basque",
"Finnish",
"French",
"West Central Oromo",
"Irish",
"Galician",
"Gujarati",
"Hebrew",
"Hindi",
"Croatian",
"Hungarian",
"Armenian",
"Igbo",
"Indonesian",
"Icelandic",
"Italian",
"Javanese",
"Japanese",
"Kamba",
"Kannada",
"Georgian",
"Kazakh",
"Kabuverdianu",
"Halh Mongolian",
"Khmer",
"Kyrgyz",
"Korean",
"Lao",
"Lithuanian",
"Luxembourgish",
"Ganda",
"Luo",
"Standard Latvian",
"Maithili",
"Malayalam",
"Marathi",
"Macedonian",
"Maltese",
"Meitei",
"Burmese",
"Dutch",
"Norwegian Nynorsk",
"Norwegian Bokmål",
"Nepali",
"Nyanja",
"Occitan",
"Odia",
"Punjabi",
"Southern Pashto",
"Western Persian",
"Polish",
"Portuguese",
"Romanian",
"Russian",
"Slovak",
"Slovenian",
"Shona",
"Sindhi",
"Somali",
"Spanish",
"Serbian",
"Swedish",
"Swahili",
"Tamil",
"Telugu",
"Tajik",
"Tagalog",
"Thai",
"Turkish",
"Ukrainian",
"Urdu",
"Northern Uzbek",
"Vietnamese",
"Xhosa",
"Yoruba",
"Cantonese",
"Colloquial Malay",
"Standard Malay",
"Zulu"
]
with gr.Blocks(theme='ParityError/Anime') as iface :
gr.Markdown(welcome_message)
with gr.Accordion("speech to text",open=True):
input_language = gr.Dropdown(languages, label="select the language",value="English",interactive=True)
audio_input = gr.Audio(label="speak",type="filepath",sources="microphone")
audio_output = gr.Markdown(label="output text")
# audio_button = gr.Button("process audio")
# audio_button.click(process_speech, inputs=[input_language,audio_input], outputs=audio_output)
gr.Examples([["English","sample_input.mp3"]],inputs=[input_language,audio_input])
with gr.Accordion("image identification",open=True):
image_input = gr.Image(label="upload image")
image_output = gr.Markdown(label="output text")
# image_button = gr.Button("process image")
# image_button.click(process_image, inputs=image_input, outputs=image_output)
gr.Examples(["sick person.jpeg"],inputs=[image_input])
with gr.Accordion("text summarization",open=True):
text_input = gr.Textbox(label="input text",lines=5)
text_output = gr.Markdown(label="output text")
text_button = gr.Button("process text")
hallucination_output = gr.Label(label="Hallucination Evaluation")
text_button.click(process_and_query, inputs=[input_language, audio_input, image_input, text_input], outputs=[text_output, hallucination_output])
gr.Examples([
["What is the proper treatment for buccal herpes?"],
["Male, 40 presenting with swollen glands and a rash"],
["How does cellular metabolism work TCA cycle"],
["What special care must be provided to children with chicken pox?"],
["When and how often should I wash my hands?"],
["بکل ہرپس کا صحیح علاج کیا ہے؟"],
["구강 헤르페스의 적절한 치료법은 무엇입니까?"],
["Je, ni matibabu gani sahihi kwa herpes ya buccal?"],
],inputs=[text_input])
# with gr.Accordion("hallucination check",open=True):
# assertion = gr.Textbox(label="assertion")
# citation = gr.Textbox(label="citation text")
# hullucination_output = gr.Markdown(label="output text")
# hallucination_button = gr.Button("check hallucination")
# gr.Examples([["i am drunk","sarah is pregnant"]],inputs=[assertion,citation])
# hallucination_button.click(check_hallucination,inputs=[assertion,citation],outputs=hullucination_output)
iface.queue().launch(show_error=True,debug=True)
|