File size: 11,744 Bytes
e23ea2d
 
 
 
 
56ece3e
4e5f073
e23ea2d
c16d4f4
e23ea2d
 
239a985
e23ea2d
 
 
239a985
e23ea2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
239a985
e23ea2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
239a985
e23ea2d
239a985
e23ea2d
 
 
ab1b1e7
56ece3e
e23ea2d
 
56ece3e
ab1b1e7
 
 
 
 
 
 
56ece3e
 
 
 
ab1b1e7
e23ea2d
 
56ece3e
 
 
 
e23ea2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9de6abb
239a985
9de6abb
e23ea2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ba7762
 
 
 
 
 
 
 
 
 
 
 
 
e23ea2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ebf7b6
e23ea2d
 
9ebf7b6
e23ea2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4194468
e23ea2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
239a985
 
 
 
 
 
e23ea2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import gradio as gr
import requests
import json
import huggingface_hub
from huggingface_hub import HfApi
from gradio_client import Client
import os

HF_TOKEN = os.environ["HF_TOKEN"]
HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}

tulu = "https://tonic1-tulu.hf.space/--replicas/9sffh/"


welcome_message = """
Hi! I'm using [Tulu from AlenAi](https://huggingface.co/spaces/Tonic1/Tulu) I'll help you **build a GPT**. You can say something like, "make a bot that gives advice on how to grow your startup."

What would you like to make?
"""

welcome_preview_message = """
Welcome to **{}**! Say something like: 

"{}"
"""

# sample_response = """
# Certainly! Here we go:

# Title: Recipe Recommender
# System Prompt: Utilize your language model abilities to suggest delicious recipes based on user preferences such as ingredients, cuisine type, cooking time, etc. Ensure accuracy and variety while maintaining a conversational style with the user. 
# Example User Input: Vegetarian dinner ideas under 30 minutes
# """

system_prompt = """
You are an AI whose job it is to help users create their own chatbots. In particular, you need to respond succintly in a friendly tone, write a system prompt for an LLM, a catchy title for the chatbot, and a very short example user input. Make sure each part is included.

For example, if a user says, "make a bot that gives advice on how to grow your startup", first do a friendly response, then add the title, system prompt, and example user input. Immediately STOP after the example input. It should be EXACTLY in this format:

Sure, I'd be happy to help you build a bot! I'm generating a title, system prompt, and an example input. How do they sound? Feel free to give me feedback!
Title: Startup Coach
System prompt: Your job as an LLM is to provide good startup advice. Do not provide extraneous comments on other topics. Be succinct but useful. 
Example input: Risks of setting up a non-profit board

Here's another example. If a user types, "Make a chatbot that roasts tech ceos", respond: 
Sure, I'd be happy to help you build a bot! I'm generating a title, system prompt, and an example input. How do they sound? Feel free to give me feedback!
Title: Tech Roaster
System prompt: As an LLM, your primary function is to deliver hilarious and biting critiques of technology CEOs. Keep it witty and entertaining, but also make sure your jokes aren't too mean-spirited or factually incorrect. 
Example input: Elon Musk
"""

def build_input_prompt(message, chatbot, system_prompt):
    """
    Constructs the input prompt string from the chatbot interactions and the current message.
    """
    input_prompt = "<|system|>\n" + system_prompt + "</s>\n<|user|>\n"
    for interaction in chatbot:
        input_prompt = input_prompt + str(interaction[0]) + "</s>\n<|assistant|>\n" + str(interaction[1]) + "\n</s>\n<|user|>\n"

    input_prompt = input_prompt + str(message) + "</s>\n<|assistant|>"
    return input_prompt


def post_request_beta(payload):
    """
    Sends a POST request to the predefined Tulu and returns the JSON response.
    """
    response = requests.post(tulu, headers=HEADERS, json=payload)
    response.raise_for_status()  # Will raise an HTTPError if the HTTP request returned an unsuccessful status code
    return response.json()

def predict_beta(message, chatbot=[], system_prompt=system_prompt, max_new_tokens=1200, temperature=0.4, top_p=0.9, repetition_penalty=0.5, advanced=False):
    client = Client(tulu)

    try:
        result = client.predict(
            message,  
            system_prompt,  
            max_new_tokens,  
            temperature, 
            top_p,  
            repetition_penalty,  
            advanced,  
            fn_index=0
        )

        if result is not None and len(result) > 0:
            bot_message = result[0]  
            return bot_message
        else:
            raise gr.Error("No response received from the model.")

    except Exception as e:
        error_msg = f"An error occurred: {str(e)}"
        raise gr.Error(error_msg)


def extract_title_prompt_example(text, title, system_prompt, example_input):
    try:
        # Finding the indices of the key terms
        text_start = text.rfind("<|assistant|>", ) + len("<|assistant|>")
        text = text[text_start:]
    except ValueError:
        pass
    try:
        title_start = text.lower().rfind("title:") + len("title:")    
        prompt_start = text.lower().rfind("system prompt:")
        title = text[title_start:prompt_start].strip()
    except ValueError:
        pass
    try:
        prompt_start = text.lower().rfind("system prompt:") + len("system prompt:")
        example_start = text.lower().rfind("example input:")
        system_prompt = text[prompt_start:example_start].strip()
    except ValueError:
        pass
    try:
        example_start = text.lower().rfind("example input:") + len("example input:")
        example_input = text[example_start:].strip()
        example_input = example_input[:example_input.index("\n")]
    except ValueError:
        pass
    return text, title, system_prompt, example_input

def make_open_gpt(message, history, current_title, system_prompt, current_example_input):
    response = predict_beta(message, history, system_prompt)
    response, title, system_prompt, example_input = extract_title_prompt_example(response, current_title, system_prompt, current_example_input)
    return "", history + [(message, response)], title, system_prompt, example_input, [(None, welcome_preview_message.format(title, example_input))], example_input, gr.Column(visible=True), gr.Group(visible=True)

def set_title_example(title, example):
    return [(None, welcome_preview_message.format(title, example))], example, gr.Column(visible=True), gr.Group(visible=True)

chatbot_preview = gr.Chatbot(layout="panel")
textbox_preview = gr.Textbox(scale=7, container=False)

def test_preview_chatbot(message, history, system_prompt):
    response = predict_beta(message, history, system_prompt)
    text_start = response.rfind("<|assistant|>", ) + len("<|assistant|>")
    response = response[text_start:]
    return response


def strip_invalid_filename_characters(filename: str, max_bytes: int = 200) -> str:
    """Strips invalid characters from a filename and ensures that the file_length is less than `max_bytes` bytes."""
    filename = filename.replace(" ", "-")
    filename = "".join([char for char in filename if char.isalnum() or char in "_-"])
    filename_len = len(filename.encode())
    if filename_len > max_bytes:
        while filename_len > max_bytes:
            if len(filename) == 0:
                break
            filename = filename[:-1]
            filename_len = len(filename.encode())
    return filename


constants = """
SYSTEM_PROMPT = "{}"
TITLE = "{}"
EXAMPLE_INPUT = "{}"
"""


def publish(textbox_system_prompt, textbox_title, textbox_example, textbox_token):
    source_file = 'app_template.py'
    destination_file = 'app.py'
    constants_formatted = constants.format(textbox_system_prompt, textbox_title, textbox_example)
    with open(source_file, 'r') as file:
        original_content = file.read()
    with open(destination_file, 'w') as file:
        file.write(constants_formatted + original_content)
    title = strip_invalid_filename_characters(textbox_title, max_bytes=30)
    api = HfApi(token=textbox_token)
    new_space = api.create_repo(
        repo_id=f"open-gpt-{title}",
        repo_type="space",
        exist_ok=True,
        private=False,
        space_sdk="gradio",
        token=textbox_token,
    )
    api.upload_file(
        repo_id=new_space.repo_id,
        path_or_fileobj='app.py',
        path_in_repo='app.py',
        token=textbox_token,
        repo_type="space",
    )
    api.upload_file(
        repo_id=new_space.repo_id,
        path_or_fileobj='README_template.md',
        path_in_repo='README.md',
        token=textbox_token,
        repo_type="space",
    )
    huggingface_hub.add_space_secret(
        new_space.repo_id, "HF_TOKEN", textbox_token, token=textbox_token
    )

    return gr.Markdown(f"Published to https://huggingface.co/spaces/{new_space.repo_id} ✅", visible=True), gr.Button("Publish", interactive=True)
    
    
css = """
#preview-tab-button{
    font-weight: bold;
}
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown(""" # 👋🏻Welcome to 🕵🏻‍♂️Agent🌷Tulu
    **A🕵🏻‍♂️Agent🌷Tulu** lets you create your own **open-source GPTs** using [allenai/tulu-2-dpo-13b](https://huggingface.co/allenai/tulu-2-dpo-13b). Start chatting to automatically below to automatically bake your GPT (or you can manually configure the recipe in the second tab). You can build and test them for free & publish them on Spaces (as Open GPTs are powered by the [Tulu DPO model](https://huggingface.co/allenai/tulu-2-dpo-70b) ).
    You think this is cool + want to make your own ? check out [GPTBaker](https://huggingface.co/abidlabs/GPT-Baker) from [AbidLabs](https://huggingface.co/abidlabs) of 🤗[Gradio](https://www.gradio.app/)
    ### Join us: 
    TeamTonic is always making cool demos! Join our active builder's community on Discord: [Discord](https://discord.gg/GWpVpekp) On Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On Github: [Polytonic](https://github.com/tonic-ai) & contribute to [PolyGPT](https://github.com/tonic-ai/polygpt-alpha) """
               )
    with gr.Row():
        with gr.Column(scale=3):
            with gr.Tab("Create"):
                chatbot_maker = gr.Chatbot([(None, welcome_message)], layout="panel", elem_id="chatbot-maker")
                with gr.Group():
                    with gr.Row():
                        textbox_maker = gr.Textbox(placeholder="Make a bot that roasts tech CEOs", scale=7, container=False, autofocus=True)
                        submit_btn = gr.Button("Bake 👩‍🍳", variant="secondary")
            with gr.Tab("Configure Recipe"):
                textbox_title = gr.Textbox("GPT Preview", label="Title")
                textbox_system_prompt = gr.Textbox(label="System prompt", lines=6)
                textbox_example = gr.Textbox(label="Placeholder example", lines=2)
            with gr.Tab("Files"):
                gr.Markdown("RAG coming soon!")
        with gr.Column(visible=False, scale=5) as preview_column:
            with gr.Tab("🪄 Preview of your Open GPT", elem_id="preview-tab") as preview_tab:
                gr.ChatInterface(test_preview_chatbot, chatbot=chatbot_preview, textbox=textbox_preview, autofocus=False, submit_btn="Test", additional_inputs=[textbox_system_prompt])
    with gr.Group(visible=False) as publish_row:
        with gr.Row():
            textbox_token = gr.Textbox(show_label=False, placeholder="Ready to publish to Spaces? Enter your HF token here", scale=7)
            publish_btn = gr.Button("Publish", variant="primary")

    published_status = gr.Markdown(visible=False)
    
    gr.on([submit_btn.click, textbox_maker.submit], make_open_gpt, [textbox_maker, chatbot_maker, textbox_title, textbox_system_prompt, textbox_example], [textbox_maker, chatbot_maker, textbox_title, textbox_system_prompt, textbox_example, chatbot_preview, textbox_preview, preview_column, publish_row])
    gr.on([textbox_title.blur, textbox_example.blur], set_title_example, [textbox_title, textbox_example], [chatbot_preview, textbox_preview, preview_column, publish_row])

    publish_btn.click(lambda : gr.Button("Publishing...", interactive=False), None, publish_btn).then(publish, [textbox_system_prompt, textbox_title, textbox_example, textbox_token], [published_status, publish_btn])

demo.launch()