File size: 6,095 Bytes
d8f06d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
999388b
d8f06d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
999388b
d8f06d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
999388b
d8f06d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
999388b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
import pickle
import json
import numpy as np
from typing import List, Dict, Any, Optional, Tuple
import faiss
from tqdm import tqdm
from sentence_transformers import SentenceTransformer, CrossEncoder

class VectorStore:
    def __init__(self, 
                 embedding_dir: str = "data/embeddings",
                 model_name: str = "BAAI/bge-small-en-v1.5",
                 reranker_name: str = "cross-encoder/ms-marco-MiniLM-L-6-v2"):
        self.embedding_dir = embedding_dir
        self.index = None
        self.chunk_ids = []
        self.chunks = {}
        
        self.model = SentenceTransformer(model_name)
        self.reranker = CrossEncoder(reranker_name)
        
        self.load_or_create_index()
    
    def load_or_create_index(self) -> None:
        index_path = os.path.join(self.embedding_dir, 'faiss_index.pkl')
        
        if os.path.exists(index_path):
            with open(index_path, 'rb') as f:
                data = pickle.load(f)
                self.index = data['index']
                self.chunk_ids = data['chunk_ids']
                self.chunks = data['chunks']
            print(f"Loaded existing index with {len(self.chunk_ids)} chunks")
        else:
            embeddings_path = os.path.join(self.embedding_dir, 'embeddings.pkl')
            if os.path.exists(embeddings_path):
                self.create_index()
            else:
                print("No embeddings found. Please run the chunker first.")
    
    def create_index(self) -> None:
        """Create FAISS index from embeddings."""
        embeddings_path = os.path.join(self.embedding_dir, 'embeddings.pkl')
        
        with open(embeddings_path, 'rb') as f:
            embedding_map = pickle.load(f)
        
        chunk_ids = list(embedding_map.keys())
        embeddings = np.array([embedding_map[chunk_id]['embedding'] for chunk_id in chunk_ids])
        chunks = {chunk_id: embedding_map[chunk_id]['chunk'] for chunk_id in chunk_ids}
        
        dimension = embeddings.shape[1]
        index = faiss.IndexFlatL2(dimension)
        index.add(embeddings.astype(np.float32))
        
        self.index = index
        self.chunk_ids = chunk_ids
        self.chunks = chunks
        
        with open(os.path.join(self.embedding_dir, 'faiss_index.pkl'), 'wb') as f:
            pickle.dump({
                'index': index,
                'chunk_ids': chunk_ids,
                'chunks': chunks
            }, f)
        
        print(f"Created index with {len(chunk_ids)} chunks")
    
    def search(self, 
              query: str, 
              k: int = 5, 
              filter_categories: Optional[List[str]] = None,
              rerank: bool = True) -> List[Dict[str, Any]]:
        
        if self.index is None:
            print("No index available. Please create an index first.")
            return []
        
        query_embedding = self.model.encode([query])[0]
        
        D, I = self.index.search(np.array([query_embedding]).astype(np.float32), min(k * 2, len(self.chunk_ids)))
        
        results = []
        for i, idx in enumerate(I[0]):
            chunk_id = self.chunk_ids[idx]
            chunk = self.chunks[chunk_id]
            
            if filter_categories and not any(cat in chunk.get('categories', []) for cat in filter_categories):
                continue
            
            result = {
                'chunk_id': chunk_id,
                'score': float(D[0][i]),
                'chunk': chunk
            }
            results.append(result)
        
        if rerank and results:
            pairs = [(query, result['chunk']['content']) for result in results]

            rerank_scores = self.reranker.predict(pairs)
            
            for i, score in enumerate(rerank_scores):
                results[i]['rerank_score'] = float(score)
            
            results = sorted(results, key=lambda x: x['rerank_score'], reverse=True)
            
            results = results[:k]
        
        return results
    
    def hybrid_search(self, 
                     query: str, 
                     k: int = 5,
                     filter_categories: Optional[List[str]] = None) -> List[Dict[str, Any]]:
        vector_results = self.search(query, k=k, filter_categories=filter_categories, rerank=False)
        
        keywords = query.lower().split()
        keyword_scores = {}
        
        for chunk_id, chunk_data in self.chunks.items():
            chunk = chunk_data
            content = (chunk['title'] + " " + chunk['content']).lower()
            
            score = sum(content.count(keyword) for keyword in keywords)
            
            if filter_categories and not any(cat in chunk.get('categories', []) for cat in filter_categories):
                continue
                
            keyword_scores[chunk_id] = score
        
        keyword_results = sorted(
            [{'chunk_id': chunk_id, 'score': score, 'chunk': self.chunks[chunk_id]} 
             for chunk_id, score in keyword_scores.items() if score > 0],
            key=lambda x: x['score'], 
            reverse=True
        )[:k]
        
        seen_ids = set()
        combined_results = []
        
        for result in vector_results:
            combined_results.append(result)
            seen_ids.add(result['chunk_id'])
        
        for result in keyword_results:
            if result['chunk_id'] not in seen_ids:
                combined_results.append(result)
                seen_ids.add(result['chunk_id'])
        
        combined_results = combined_results[:k]
        
        if combined_results:
            pairs = [(query, result['chunk']['content']) for result in combined_results]
            
            rerank_scores = self.reranker.predict(pairs)
            
            for i, score in enumerate(rerank_scores):
                combined_results[i]['rerank_score'] = float(score)
            
            combined_results = sorted(combined_results, key=lambda x: x['rerank_score'], reverse=True)
        
        return combined_results