File size: 15,255 Bytes
d8f06d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import os
import json
import datetime
from typing import List, Dict, Any, Set
from urllib.parse import urlparse, urljoin
import re
import time
from bs4 import BeautifulSoup
from playwright.sync_api import sync_playwright
import trafilatura
import pymupdf
class BuffaloScraper:
def __init__(self, seed_url: str = "https://www.buffalo.edu/international-student-services.html",
output_dir: str = "data/raw"):
self.seed_url = seed_url
self.output_dir = output_dir
self.visited_urls: Set[str] = set()
self.queue: List[str] = [seed_url]
self.domain = urlparse(seed_url).netloc
# Create output directory if it doesn't exist
os.makedirs(output_dir, exist_ok=True)
# Keywords to filter useless content
self.useless_keywords = [
"privacy policy", "terms of use", "cookie", "last updated",
"©", "copyright", "follow us", "social media",
"related links", "site map", "skip to content", "all rights reserved"
]
def is_valid_url(self, url: str) -> bool:
"""Check if URL should be scraped."""
parsed = urlparse(url)
# Only process buffalo.edu URLs
if not parsed.netloc.endswith('buffalo.edu'):
return False
# Skip certain file types
if parsed.path.endswith(('.jpg', '.jpeg', '.png', '.gif', '.css', '.js')):
return False
# Skip already visited URLs
if url in self.visited_urls:
return False
# Skip certain patterns that are likely not content pages
skip_patterns = [
'/search', '/login', '/user', '/admin', '/cart', '/account',
'javascript:', 'mailto:', 'tel:', '#', 'facebook.com', 'twitter.com',
'instagram.com', 'youtube.com', 'linkedin.com'
]
if any(pattern in url.lower() for pattern in skip_patterns):
return False
return True
def is_useless_line(self, line: str) -> bool:
"""Check if a line of text is likely useless footer/header content."""
line = line.lower()
return any(kw in line for kw in self.useless_keywords)
def is_valid_line(self, line: str) -> bool:
"""Check if a line is valid content."""
if not line or len(line.strip().split()) < 3:
return False
if self.is_useless_line(line):
return False
return True
def is_heading_like(self, line: str) -> bool:
"""Check if a line is likely a heading."""
line = line.strip()
word_count = len(line.split())
return (
line.isupper() and word_count <= 10 or
(len(line) < 100 and word_count <= 15 and line.endswith((':', '?')))
)
def extract_clean_content(self, html: str) -> str:
"""Extract clean content with smart filtering."""
soup = BeautifulSoup(html, "html.parser")
# Remove unwanted tags
for tag in soup(["script", "style", "header", "footer", "nav", "aside"]):
tag.decompose()
# Try trafilatura first as it's often better at extracting main content
trafilatura_content = trafilatura.extract(html, include_tables=True,
include_images=False,
include_links=True,
output_format='txt')
# If trafilatura fails or returns little content, use our own extraction
if not trafilatura_content or len(trafilatura_content) < 200:
raw_text = soup.get_text(separator="\n")
lines = raw_text.split("\n")
clean_lines = []
for line in lines:
line = line.strip()
if not self.is_valid_line(line):
continue
clean_lines.append(line)
# Merge lines smartly
formatted_text = ""
buffer = ""
for line in clean_lines:
# Treat as Heading or List Item
if self.is_heading_like(line) or line.startswith(("-", "*", "•")):
if buffer:
formatted_text += buffer.strip() + "\n\n"
buffer = ""
formatted_text += line.strip() + "\n"
else:
buffer += line + " "
if buffer:
formatted_text += buffer.strip() + "\n"
return formatted_text.strip()
return trafilatura_content
def extract_content(self, html: str, url: str) -> Dict[str, Any]:
"""Extract structured content from HTML."""
soup = BeautifulSoup(html, 'html.parser')
# Extract title
title = soup.title.text.strip() if soup.title else ""
# Get cleaned content
content = self.extract_clean_content(html)
# Extract headings
headings = []
for h in soup.find_all(['h1', 'h2', 'h3', 'h4', 'h5', 'h6']):
headings.append({
'level': int(h.name[1]),
'text': h.get_text(strip=True)
})
# Extract FAQs (common patterns in UB sites)
faqs = []
# Look for accordion elements, common FAQ containers
faq_containers = soup.select('.accordion, .faq, .collapse, .panel-group, .question-answer, details')
for container in faq_containers:
# Look for question/answer pairs in various formats
question_selectors = ['.accordion-header', '.faq-question', '.card-header',
'summary', '.question', 'dt', 'h3', 'h4', '.panel-title']
answer_selectors = ['.accordion-body', '.faq-answer', '.card-body',
'.answer', 'dd', '.panel-body', 'p']
# Try to select using CSS selectors
questions = container.select(', '.join(question_selectors))
answers = container.select(', '.join(answer_selectors))
# Match questions with answers
for i, q in enumerate(questions):
if i < len(answers):
faqs.append({
'question': q.get_text(strip=True),
'answer': answers[i].get_text(strip=True)
})
# Also try to detect Q&A patterns in paragraphs
p_texts = [p.get_text(strip=True) for p in soup.find_all('p')]
for i, text in enumerate(p_texts):
if i < len(p_texts) - 1 and text.strip().endswith('?'):
faqs.append({
'question': text,
'answer': p_texts[i+1]
})
# Extract important links
important_links = []
for a in soup.find_all('a', href=True):
link_text = a.get_text(strip=True)
href = a['href']
if link_text and any(keyword in link_text.lower() for keyword in
['form', 'document', 'application', 'guide', 'i-20', 'opt', 'cpt']):
important_links.append({
'text': link_text,
'url': href
})
# Metadata extraction from URL
parsed = urlparse(url)
path_parts = [p for p in parsed.path.strip("/").split("/") if p]
# Try to categorize the content
categories = []
if re.search(r'\b(visa|i-20|i20|sevis|immigration)\b', content, re.I):
categories.append('immigration')
if re.search(r'\b(opt|cpt|employment|work|job|internship)\b', content, re.I):
categories.append('employment')
if re.search(r'\b(tuition|fee|payment|cost|financial)\b', content, re.I):
categories.append('fees')
if re.search(r'\b(housing|accommodation|apartment|dorm|living)\b', content, re.I):
categories.append('housing')
# Build structured document
document = {
'url': url,
'title': title,
'content': content,
'headings': headings,
'faqs': faqs,
'important_links': important_links,
'categories': categories,
'scraped_at': datetime.datetime.now().isoformat(),
'path_hierarchy': path_parts,
'domain': parsed.netloc
}
return document
def extract_links(self, html: str, base_url: str) -> List[str]:
"""Extract all links from the page."""
soup = BeautifulSoup(html, 'html.parser')
links = []
for a in soup.find_all('a', href=True):
href = a['href']
# Handle relative URLs
full_url = urljoin(base_url, href)
# Normalize URL
full_url = full_url.split('#')[0] # Remove fragment
full_url = full_url.rstrip('/') # Remove trailing slash
if self.is_valid_url(full_url):
links.append(full_url)
return links
def process_pdf(self, url: str) -> Dict[str, Any]:
"""Download and extract text from PDF."""
with sync_playwright() as p:
browser = p.chromium.launch()
page = browser.new_page()
try:
page.goto(url, timeout=60000) # 60 second timeout
# Get the PDF as bytes
pdf_data = page.pdf(path=None)
browser.close()
except Exception as e:
browser.close()
print(f"Error downloading PDF {url}: {str(e)}")
return None
# Create a temporary file to use with PyMuPDF
temp_path = os.path.join(self.output_dir, "temp.pdf")
with open(temp_path, "wb") as f:
f.write(pdf_data)
# Extract text from PDF
doc = pymupdf.open(temp_path)
text = ""
for page_num in range(doc.page_count):
page = doc[page_num]
text += page.get_text()
doc.close()
# Remove temporary file
os.remove(temp_path)
# Extract metadata from URL
parsed = urlparse(url)
path_parts = [p for p in parsed.path.strip("/").split("/") if p]
filename = os.path.basename(url)
# Categorize PDF content
categories = []
if re.search(r'\b(visa|i-20|i20|sevis|immigration)\b', text, re.I):
categories.append('immigration')
if re.search(r'\b(opt|cpt|employment|work|job|internship)\b', text, re.I):
categories.append('employment')
if re.search(r'\b(tuition|fee|payment|cost|financial)\b', text, re.I):
categories.append('fees')
if re.search(r'\b(housing|accommodation|apartment|dorm|living)\b', text, re.I):
categories.append('housing')
# Build structured document
document = {
'url': url,
'title': filename or os.path.basename(url),
'content': text,
'document_type': 'pdf',
'categories': categories,
'scraped_at': datetime.datetime.now().isoformat(),
'path_hierarchy': path_parts,
'domain': parsed.netloc
}
return document
def scrape(self, max_pages: int = 100, max_depth: int = 4) -> None:
"""Main scraping function."""
pages_scraped = 0
depth_map = {self.seed_url: 0} # Track depth of each URL
with sync_playwright() as p:
browser = p.chromium.launch()
page = browser.new_page()
while self.queue and pages_scraped < max_pages:
url = self.queue.pop(0)
current_depth = depth_map.get(url, 0)
if current_depth > max_depth:
continue
if url in self.visited_urls:
continue
try:
print(f"Scraping: {url} (depth: {current_depth})")
self.visited_urls.add(url)
# Handle PDFs separately
if url.lower().endswith('.pdf'):
document = self.process_pdf(url)
if document:
# Save the document
filename = f"{pages_scraped:04d}_{urlparse(url).netloc.replace('.', '_')}.json"
filepath = os.path.join(self.output_dir, filename)
with open(filepath, 'w') as f:
json.dump(document, f, indent=2)
pages_scraped += 1
else:
# Regular webpage
try:
page.goto(url, timeout=30000) # 30 second timeout
page.wait_for_load_state('networkidle', timeout=10000) # Wait for page to load
html = page.content()
# Extract content
document = self.extract_content(html, url)
# Save the document
filename = f"{pages_scraped:04d}_{urlparse(url).netloc.replace('.', '_')}.json"
filepath = os.path.join(self.output_dir, filename)
with open(filepath, 'w') as f:
json.dump(document, f, indent=2)
pages_scraped += 1
# Extract links for further scraping if we haven't reached max depth
if current_depth < max_depth:
links = self.extract_links(html, url)
for link in links:
if link not in self.visited_urls and link not in self.queue:
self.queue.append(link)
depth_map[link] = current_depth + 1
except Exception as e:
print(f"Error processing page {url}: {str(e)}")
continue
except Exception as e:
print(f"Error scraping {url}: {str(e)}")
# Add a small delay to be nice to the server
time.sleep(1)
browser.close()
print(f"Scraping completed. Scraped {pages_scraped} pages.")
# Example usage
if __name__ == "__main__":
scraper = BuffaloScraper()
scraper.scrape(max_pages=100, max_depth=4)
|