File size: 29,802 Bytes
5f90da0
 
 
 
b6a4fbc
 
b410b48
5f90da0
 
 
 
 
 
4e88b4e
f88111a
b6a4fbc
5f90da0
 
8eaf20e
 
 
 
5f90da0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4c4555
5f90da0
a4c4555
5f90da0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f413f10
5f90da0
 
 
 
 
 
 
 
 
 
 
 
 
a172c2e
 
3838d4e
a172c2e
 
 
 
 
 
 
8f7443f
a172c2e
 
 
 
 
 
 
 
 
fca0a9d
a172c2e
 
 
 
 
 
 
 
 
 
 
 
 
 
3838d4e
a172c2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.layers import Dense, Flatten, Conv2D
from tensorflow.keras import Model
from matplotlib import pyplot as plt
from PIL import Image,ImageFont, ImageDraw
from skimage.transform import rescale, resize
import numpy as np
import re
import math
import copy
import random
import time
import data
import cv2

#import data
rng = np.random.RandomState(int(time.time()))

#### training setup parameters ####
lambda_val=1e-4
gamma_val=1
num_classes=130

##  Utility functions used to initialize vaiables
def norm_weight(fan_in, fan_out):
	W_bound = np.sqrt(6.0 / (fan_in + fan_out))
	return np.asarray(rng.uniform(low=-W_bound, high=W_bound, size=(fan_in, fan_out)), dtype=np.float32)

def conv_norm_weight(nin, nout, kernel_size):
    filter_shape = (kernel_size[0], kernel_size[1], nin, nout)
    fan_in = kernel_size[0] * kernel_size[1] * nin
    fan_out = kernel_size[0] * kernel_size[1] * nout
    W_bound = np.sqrt(6. / (fan_in + fan_out))
    W = np.asarray(rng.uniform(low=-W_bound, high=W_bound, size=filter_shape), dtype=np.float32)
    return W.astype('float32')

def ortho_weight(ndim):
	W = np.random.randn(ndim, ndim)
	u, s, v = np.linalg.svd(W)
	return u.astype('float32')

#####
class DenseEncoder(layers.Layer):
	def __init__(self, blocks,       # number of dense blocks
				level,                     # number of levels in each blocks
				growth_rate,               # growth rate in DenseNet paper: k
				istraining,
				dropout_rate=0.2,          # keep-rate of dropout layer
				dense_channels=0,          # filter numbers of transition layer's input
				transition=0.5,            # rate of comprssion
				input_conv_filters=48,     # filter numbers of conv2d before dense blocks
				input_conv_stride=(2,2),       # stride of conv2d before dense blocks
				input_conv_kernel=(7,7), **kwargs):  # kernel size of conv2d before dense blocks
		super(DenseEncoder, self).__init__( **kwargs)
		self.blocks = blocks
		self.growth_rate = growth_rate
		self.training = istraining
		self.dense_channels = dense_channels
		self.level = level
		self.dropout_rate = dropout_rate
		self.transition = transition
		self.input_conv_kernel = input_conv_kernel
		self.input_conv_stride = input_conv_stride
		self.input_conv_filters = input_conv_filters

		self.limit = self.bound(1, self.input_conv_filters, self.input_conv_kernel)
		self.conv1=tf.keras.layers.Conv2D(filters=self.input_conv_filters, kernel_size=self.input_conv_kernel ,strides=self.input_conv_stride, padding='same', data_format='channels_last', use_bias=False , kernel_initializer=tf.random_uniform_initializer(-self.limit, self.limit))
		self.batch_norm=tf.keras.layers.BatchNormalization(trainable=self.training, momentum=0.9, scale=True, gamma_initializer=tf.random_uniform_initializer(-1.0/math.sqrt(self.input_conv_filters),1.0/math.sqrt(self.input_conv_filters)), epsilon=0.0001)
		self.relu=tf.keras.layers.ReLU()
		self.maxpool=tf.keras.layers.MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding='same')

		self.dropout=tf.keras.layers.Dropout(rate=self.dropout_rate)
		self.avgpool=tf.keras.layers.AveragePooling2D(pool_size=(2, 2), strides=(2, 2), padding='same')

		self.conv=[]
		self.conv2=[]
		self.batchnorm=[]
		self.batchnorm2=[]
		self.dense_channels += self.input_conv_filters
		for i in range(self.blocks):
			for j in range(self.level):
					limit = self.bound(self.dense_channels, 4 * self.growth_rate, [1,1])
					self.conv.append(tf.keras.layers.Conv2D(filters=4 * self.growth_rate, kernel_size=(1,1) ,strides=(1,1), padding='valid', data_format='channels_last', use_bias=False , kernel_initializer=tf.random_uniform_initializer(-limit, limit)))
					self.batchnorm.append(tf.keras.layers.BatchNormalization(trainable=self.training, momentum=0.9, scale=True,gamma_initializer=tf.random_uniform_initializer(-1.0/math.sqrt(4 * self.growth_rate),1.0/math.sqrt(4 * self.growth_rate)), epsilon=0.0001))

					limit = self.bound(4 * self.growth_rate, self.growth_rate, [3,3])
					self.conv.append(tf.keras.layers.Conv2D(filters=self.growth_rate, kernel_size=(3,3) ,strides=(1,1), padding='same', data_format='channels_last', use_bias=False , kernel_initializer=tf.random_uniform_initializer(-limit, limit)))
					self.batchnorm.append(tf.keras.layers.BatchNormalization(trainable=self.training, momentum=0.9, scale=True,gamma_initializer=tf.random_uniform_initializer(-1.0/math.sqrt(self.growth_rate),1.0/math.sqrt(self.growth_rate)), epsilon=0.0001))
					self.dense_channels += self.growth_rate

			if i < self.blocks - 1:
					compressed_channels = int(self.dense_channels * self.transition)

					#### new dense channels for new dense block ####
					self.dense_channels = compressed_channels
					limit = self.bound(self.dense_channels, compressed_channels, [1,1])
					self.conv2.append(tf.keras.layers.Conv2D(compressed_channels, kernel_size=(1,1) ,strides=(1,1), padding='valid', data_format='channels_last', use_bias=False , activation=None, kernel_initializer=tf.random_uniform_initializer(-limit, limit)))
					self.batchnorm2.append(tf.keras.layers.BatchNormalization(trainable=self.training, momentum=0.9, scale=True, gamma_initializer=tf.random_uniform_initializer(-1.0/math.sqrt(self.dense_channels),1.0/math.sqrt(self.dense_channels)), epsilon=0.0001))


	def bound(self, nin, nout, kernel):
		fin = nin * kernel[0] * kernel[1]
		fout = nout * kernel[0] * kernel[1]
		return np.sqrt(6. / (fin + fout))

	def dense_net(self, input_x, mask_x):

		#### before flowing into dense blocks ####
		input_x=tf.expand_dims(input=input_x, axis=3)
		x = input_x
		#limit = self.bound(1, self.input_conv_filters, self.input_conv_kernel)
		x =self.conv1(x)
		mask_x = mask_x[:, 0::2, 0::2]
		x =self.batch_norm(x)
		x =self.relu(x)
		x=self.maxpool(x)
		input_pre = x
		mask_x = mask_x[:, 0::2, 0::2]
		dense_out = x

		cind=0
		bind=0
		cind2=0
		bind2=0
		#### flowing into dense blocks and transition_layer ####
		for i in range(self.blocks):
			for j in range(self.level):
				#### [1, 1] convolution part for bottleneck ####
				x =self.conv[cind](x)
				cind += 1
				x =self.batchnorm[bind](x)
				bind += 1
				x =self.relu(x)
				x =self.dropout(x,training=self.training)

				#### [3, 3] convolution part for regular convolve operation
				x =self.conv[cind](x)
				cind += 1
				x =self.batchnorm[bind](x)
				bind += 1
				x =self.relu(x)
				x =self.dropout(x,training=self.training)
				dense_out = tf.concat([dense_out, x], axis=3)
				x = dense_out
				#### calculate the filter number of dense block's output ####

			if i < self.blocks - 1:
				#### new dense channels for new dense block ####
				x =self.conv2[cind2](x)
				cind2 += 1
				x =self.batchnorm2[bind2](x)
				bind2 += 1
				x =self.relu(x)
				x =self.dropout(x,training=self.training)
				x=self.avgpool(x)
				dense_out = x
				mask_x = mask_x[:, 0::2, 0::2]

		return dense_out, mask_x

'''
ContextualAttention class implements contextual attention mechanism.
'''
class ContextualAttention(layers.Layer):
	def __init__(self, channels,                          # output of DenseEncoder | [batch, h, w, channels]
				dim_decoder, dim_attend, **kwargs):                       # decoder hidden state:$h_{t-1}$ | [batch, dec_dim]
		super(ContextualAttention, self).__init__( **kwargs)
		self.channels = channels

		self.coverage_kernel = [11,11]                      # kernel size of $Q$
		self.coverage_filters = dim_attend                  # filter numbers of $Q$ | 512

		self.dim_decoder = dim_decoder                      # 256
		self.dim_attend = dim_attend                        # unified dim of three parts calculating $e_ti$ i.e.
		                                                    # $Q*beta_t$, $U_a * a_i$, $W_a x h_{t-1}$ | 512
		self.U_f = tf.Variable(norm_weight(self.coverage_filters, self.dim_attend), name='U_f') # $U_f x f_i$ | [cov_filters, dim_attend]
		self.U_f_b = tf.Variable(np.zeros((self.dim_attend,)).astype('float32'), name='U_f_b')  # $U_f x f_i + U_f_b$ | [dim_attend, ]

		self.U_a = tf.Variable(norm_weight(self.channels,self.dim_attend), name='U_a')         # $U_a x a_i$ | [annotatin_channels, dim_attend]
		self.U_a_b = tf.Variable(np.zeros((self.dim_attend,)).astype('float32'), name='U_a_b') # $U_a x a_i + U_a_b$ | [dim_attend, ]

		self.W_a = tf.Variable(norm_weight(self.dim_decoder,self.dim_attend), name='W_a')      # $W_a x h_{t_1}$ | [dec_dim, dim_attend]
		self.W_a_b = tf.Variable(np.zeros((self.dim_attend,)).astype('float32'), name='W_a_b') # $W_a x h_{t-1} + W_a_b$ | [dim_attend, ]

		self.V_a = tf.Variable(norm_weight(self.dim_attend, 1), name='V_a')                    # $V_a x tanh(A + B + C)$ | [dim_attend, 1]
		self.V_a_b = tf.Variable(np.zeros((1,)).astype('float32'), name='V_a_b')               # $V_a x tanh(A + B + C) + V_a_b$ | [1, ]

		self.alpha_past_filter = tf.Variable(conv_norm_weight(1, self.dim_attend, self.coverage_kernel), name='alpha_past_filter')


	def get_context(self, annotation4ctx, h_t_1, alpha_past4ctx, a_mask):

		#### calculate $U_f x f_i$ ####
		alpha_past_4d = alpha_past4ctx[:, :, :, None]

		Ft = tf.nn.conv2d(alpha_past_4d, filters=self.alpha_past_filter, strides=[1, 1, 1, 1], padding='SAME')
		coverage_vector = tf.tensordot(Ft, self.U_f, axes=1) 	#+ self.U_f_b    # [batch, h, w, dim_attend]

		#### calculate $U_a x a_i$ ####
		dense_encoder_vector = tf.tensordot(annotation4ctx, self.U_a, axes=1) #+ self.U_a_b   # [batch, h, w, dim_attend]

		#### calculate $W_a x h_{t - 1}$ ####
		speller_vector = tf.tensordot(h_t_1, self.W_a, axes=1) #+ self.W_a_b   # [batch, dim_attend]
		speller_vector = speller_vector[:, None, None, :]    # [batch, None, None, dim_attend]

		tanh_vector = tf.tanh(coverage_vector + dense_encoder_vector + speller_vector + self.U_f_b)    # [batch, h, w, dim_attend]
		e_ti = tf.tensordot(tanh_vector, self.V_a, axes=1) + self.V_a_b  # [batch, h, w, 1]
		alpha = tf.exp(e_ti)
		alpha = tf.squeeze(alpha, axis=3)

		if a_mask is not None:
			alpha = alpha * a_mask

		alpha = alpha / tf.reduce_sum(alpha, axis=[1, 2], keepdims=True)    # normlized weights | [batch, h, w]
		alpha_past4ctx += alpha    # accumalated weights matrix | [batch, h, w]
		context = tf.reduce_sum(annotation4ctx * alpha[:, :, :, None], axis=[1, 2])   # context vector | [batch, feature_channels]
		return context, alpha, alpha_past4ctx

'''
Decoder class implements 2 layerd Decoder (GRU) which decodes an input image
and outputs a seuence of characters using attention mechanism .
'''
class Decoder(layers.Layer):
	def __init__(self, hidden_dim, word_dim, contextual_attention, context_dim, **kwargs):
		super(Decoder, self).__init__( **kwargs)
		self.contextual_attention = contextual_attention                                # inner-instance of contextual_attention to provide context
		self.context_dim = context_dim                          # context dime 684
		self.hidden_dim = hidden_dim                            # dim of hidden state  256
		self.word_dim = word_dim                                # dim of embedding word 256

		##GRU 1 weights initialization starts here
		self.W_yz_yr = tf.Variable(np.concatenate(
			[norm_weight(self.word_dim, self.hidden_dim), norm_weight(self.word_dim, self.hidden_dim)], axis=1), name='W_yz_yr') # [dim_word, 2 * dim_decoder]
		self.b_yz_yr = tf.Variable(np.zeros((2 * self.hidden_dim, )).astype('float32'), name='b_yz_yr')

		self.U_hz_hr = tf.Variable(np.concatenate(
			[ortho_weight(self.hidden_dim),ortho_weight(self.hidden_dim)], axis=1), name='U_hz_hr')                              # [dim_hidden, 2 * dim_hidden]

		self.W_yh = tf.Variable(norm_weight(self.word_dim,
			self.hidden_dim), name='W_yh')
		self.b_yh = tf.Variable(np.zeros((self.hidden_dim, )).astype('float32'), name='b_yh')                                    # [dim_decoder, ]

		self.U_rh = tf.Variable(ortho_weight(self.hidden_dim), name='U_rh')                                                      # [dim_hidden, dim_hidden]

		##GRU 2 weights initialization starts here
		self.U_hz_hr_nl = tf.Variable(np.concatenate(
			[ortho_weight(self.hidden_dim), ortho_weight(self.hidden_dim)], axis=1), name='U_hz_hr_nl')                          # [dim_hidden, 2 * dim_hidden] non_linear

		self.b_hz_hr_nl = tf.Variable(np.zeros((2 * self.hidden_dim, )).astype('float32'), name='b_hz_hr_nl')                    # [2 * dim_hidden, ]

		self.W_c_z_r = tf.Variable(norm_weight(self.context_dim,
			2 * self.hidden_dim), name='W_c_z_r')

		self.U_rh_nl = tf.Variable(ortho_weight(self.hidden_dim), name='U_rh_nl')
		self.b_rh_nl = tf.Variable(np.zeros((self.hidden_dim, )).astype('float32'), name='b_rh_nl')

		self.W_c_h_nl = tf.Variable(norm_weight(self.context_dim, self.hidden_dim), name='W_c_h_nl')



	def get_ht_ctx(self, emb_y, target_hidden_state_0, annotations, a_m, y_m):

		res = tf.scan(self.one_time_step, elems=(emb_y, y_m),
			initializer=(target_hidden_state_0,
				tf.zeros([tf.shape(annotations)[0], self.context_dim]),
				tf.zeros([tf.shape(annotations)[0], tf.shape(annotations)[1], tf.shape(annotations)[2]]),
				tf.zeros([tf.shape(annotations)[0], tf.shape(annotations)[1], tf.shape(annotations)[2]]),
				annotations, a_m))

		return res




	def one_time_step(self, tuple_h0_ctx_alpha_alpha_past_annotation, tuple_emb_mask):

		target_hidden_state_0 = tuple_h0_ctx_alpha_alpha_past_annotation[0]
		alpha_past_one        = tuple_h0_ctx_alpha_alpha_past_annotation[3]
		annotation_one        = tuple_h0_ctx_alpha_alpha_past_annotation[4]
		a_mask                = tuple_h0_ctx_alpha_alpha_past_annotation[5]

		emb_y, y_mask = tuple_emb_mask

		#GRU 1 starts here
		emb_y_z_r_vector = tf.tensordot(emb_y, self.W_yz_yr, axes=1) + \
		self.b_yz_yr                                            # [batch, 2 * dim_decoder]
		hidden_z_r_vector = tf.tensordot(target_hidden_state_0,
		self.U_hz_hr, axes=1)                                   # [batch, 2 * dim_decoder]
		pre_z_r_vector = tf.sigmoid(emb_y_z_r_vector + \
		hidden_z_r_vector)                                      # [batch, 2 * dim_decoder]

		r1 = pre_z_r_vector[:, :self.hidden_dim]                # [batch, dim_decoder]
		z1 = pre_z_r_vector[:, self.hidden_dim:]                # [batch, dim_decoder]

		emb_y_h_vector = tf.tensordot(emb_y, self.W_yh, axes=1) + \
		self.b_yh                                               # [batch, dim_decoder]
		hidden_r_h_vector = tf.tensordot(target_hidden_state_0,
		self.U_rh, axes=1)                                      # [batch, dim_decoder]
		hidden_r_h_vector *= r1
		pre_h_proposal = tf.tanh(hidden_r_h_vector + emb_y_h_vector)

		pre_h = z1 * target_hidden_state_0 + (1. - z1) * pre_h_proposal

		if y_mask is not None:
			pre_h = y_mask[:, None] * pre_h + (1. - y_mask)[:, None] * target_hidden_state_0

		context, alpha, alpha_past_one = self.contextual_attention.get_context(annotation_one, pre_h, alpha_past_one, a_mask)  # [batch, dim_ctx]

		#GRU 2 starts here
		emb_y_z_r_nl_vector = tf.tensordot(pre_h, self.U_hz_hr_nl, axes=1) + self.b_hz_hr_nl
		context_z_r_vector = tf.tensordot(context, self.W_c_z_r, axes=1)
		z_r_vector = tf.sigmoid(emb_y_z_r_nl_vector + context_z_r_vector)

		r2 = z_r_vector[:, :self.hidden_dim]
		z2 = z_r_vector[:, self.hidden_dim:]

		emb_y_h_nl_vector = tf.tensordot(pre_h, self.U_rh_nl, axes=1)
		emb_y_h_nl_vector *= r2
		emb_y_h_nl_vector=emb_y_h_nl_vector+ self.b_rh_nl # bias added after point wise multiplication with r2
		context_h_vector = tf.tensordot(context, self.W_c_h_nl, axes=1)
		h_proposal = tf.tanh(emb_y_h_nl_vector + context_h_vector)
		h = z2 * pre_h + (1. - z2) * h_proposal

		if y_mask is not None:
			h = y_mask[:, None] * h + (1. - y_mask)[:, None] * pre_h

		return h, context, alpha, alpha_past_one, annotation_one, a_mask


'''
CALText class is the main class. This class uses below three classes:
1) DenseEncoder (Encoder)
2) ContextualAttention (Contextual attention mechnism)
3) Decoder (2 layerd GRU Decoder)
CALText class implements two functions get_cost and get_sample, which are actually used for cost calculation and decoding.
'''
class CALText(layers.Layer):
	def __init__(self, dense_encoder, contextual_attention, decoder, hidden_dim, word_dim, context_dim, target_dim, istraining,**kwargs):
		super(CALText, self).__init__( **kwargs)
		#self.batch_size = batch_size
		self.hidden_dim = hidden_dim
		self.word_dim = word_dim
		self.context_dim = context_dim
		self.target_dim = target_dim
		self.embed_matrix = tf.Variable(norm_weight(self.target_dim, self.word_dim), name='embed')

		self.dense_encoder = dense_encoder
		self.contextual_attention = contextual_attention
		self.decoder = decoder
		self.Wa2h = tf.Variable(norm_weight(self.context_dim, self.hidden_dim), name='Wa2h')
		self.ba2h = tf.Variable(np.zeros((self.hidden_dim,)).astype('float32'), name='ba2h')
		self.Wc = tf.Variable(norm_weight(self.context_dim, self.word_dim), name='Wc')
		self.bc = tf.Variable(np.zeros((self.word_dim,)).astype('float32'), name='bc')
		self.Wh = tf.Variable(norm_weight(self.hidden_dim, self.word_dim), name='Wh')
		self.bh = tf.Variable(np.zeros((self.word_dim,)).astype('float32'), name='bh')
		self.Wy = tf.Variable(norm_weight(self.word_dim, self.word_dim), name='Wy')
		self.by = tf.Variable(np.zeros((self.word_dim,)).astype('float32'), name='by')
		self.Wo = tf.Variable(norm_weight(self.word_dim//2, self.target_dim), name='Wo')
		self.bo = tf.Variable(np.zeros((self.target_dim,)).astype('float32'), name='bo')
		self.training = istraining
		self.dropout=tf.keras.layers.Dropout(rate=0.2)


	def get_cost(self, cost_annotation, cost_y, a_m, y_m,alpha_reg):

		#### step: 1 prepration of embedding of labels sequences ####
		timesteps = tf.shape(cost_y)[0]
		batch_size = tf.shape(cost_y)[1]

		emb_y = tf.nn.embedding_lookup(self.embed_matrix, tf.reshape(cost_y, [-1]))
		emb_y = tf.reshape(emb_y, [timesteps, batch_size, self.word_dim])
		emb_pad = tf.fill((1, batch_size, self.word_dim), 0.0)
		emb_shift = tf.concat([emb_pad ,tf.strided_slice(emb_y, [0, 0, 0], [-1, batch_size, self.word_dim], [1, 1, 1])], axis=0)
		new_emb_y = emb_shift

		#### step: 2 calculation of h_0 ####
		anno_mean = tf.reduce_sum(cost_annotation * a_m[:, :, :, None], axis=[1, 2]) / tf.reduce_sum(a_m, axis=[1, 2])[:, None]
		h_0 = tf.tensordot(anno_mean, self.Wa2h, axes=1) + self.ba2h  # [batch, hidden_dim]
		h_0 = tf.tanh(h_0)

		#### step: 3 calculation of h_t and c_t at all time steps ####
		ret = self.decoder.get_ht_ctx(new_emb_y, h_0, cost_annotation, a_m, y_m)
		h_t = ret[0]                      # h_t of all timesteps [timesteps, batch, hidden_dim]
		c_t = ret[1]                      # c_t of all timesteps [timesteps, batch, context_dim]
		alpha=ret[2]											# alpha of all timesteps [timesteps, batch, h, w]

		#### step: 4 calculation of cost using h_t, c_t and y_t_1 ####
		y_t_1 = new_emb_y                 # shifted y | [1:] = [:-1]
		logit_gru = tf.tensordot(h_t, self.Wh, axes=1) #+ self.bh
		logit_ctx = tf.tensordot(c_t, self.Wc, axes=1) #+ self.bc
		logit_pre = tf.tensordot(y_t_1, self.Wy, axes=1) #+ self.by
		logit = logit_pre + logit_ctx + logit_gru + self.bh
		shape = tf.shape(logit)
		logit = tf.reshape(logit, [shape[0], -1, shape[2]//2, 2])
		logit = tf.reduce_max(logit, axis=3)
		logit =self.dropout(logit,training=self.training)
		#logit = tf.layers.dropout(inputs=logit, rate=0.2, training=self.training)

		logit = tf.tensordot(logit, self.Wo, axes=1) + self.bo
		logit_shape = tf.shape(logit)
		logit = tf.reshape(logit, [-1,logit_shape[2]])
		cost = tf.nn.softmax_cross_entropy_with_logits(logits=logit, labels=tf.one_hot(tf.reshape(cost_y, [-1]),depth=self.target_dim))

		#### max pooling on vector with size equal to word_dim ####
		cost = tf.multiply(cost, tf.reshape(y_m, [-1]))
		cost = tf.reshape(cost, [shape[0], shape[1]])
		cost = tf.reduce_sum(cost, axis=0)
		cost = tf.reduce_mean(cost)

		#### alpha  L1 regularization ####
		alpha_sum=tf.reduce_mean(tf.reduce_sum(tf.reduce_sum(tf.abs(alpha), axis=[2, 3]),axis=0))
		cost = tf.cond(tf.cast(alpha_reg > 0, tf.bool),  	lambda: cost + (alpha_reg * alpha_sum), lambda: cost)

		return cost


	def get_word(self, sample_y, sample_h_pre, alpha_past_pre, sample_annotation,training_mode):

		emb = tf.cond(pred=sample_y[0] < 0,
			true_fn=lambda: tf.fill((1, self.word_dim), 0.0),
			false_fn=lambda: tf.nn.embedding_lookup(params=self.embed_matrix, ids=sample_y)
			)

		#ret = self.decoder.one_time_step((h_pre, None, None, alpha_past_pre, annotation, None), (emb, None))
		emb_y_z_r_vector = tf.tensordot(emb, self.decoder.W_yz_yr, axes=1) + \
		self.decoder.b_yz_yr                                            # [batch, 2 * dim_decoder]
		hidden_z_r_vector = tf.tensordot(sample_h_pre,
		self.decoder.U_hz_hr, axes=1)                                   # [batch, 2 * dim_decoder]
		pre_z_r_vector = tf.sigmoid(emb_y_z_r_vector + \
		hidden_z_r_vector)                                             # [batch, 2 * dim_decoder]

		r1 = pre_z_r_vector[:, :self.decoder.hidden_dim]                # [batch, dim_decoder]
		z1 = pre_z_r_vector[:, self.decoder.hidden_dim:]                # [batch, dim_decoder]

		emb_y_h_vector = tf.tensordot(emb, self.decoder.W_yh, axes=1) + \
		self.decoder.b_yh                                               # [batch, dim_decoder]
		hidden_r_h_vector = tf.tensordot(sample_h_pre,
		self.decoder.U_rh, axes=1)                                      # [batch, dim_decoder]
		hidden_r_h_vector *= r1
		pre_h_proposal = tf.tanh(hidden_r_h_vector + emb_y_h_vector)

		pre_h = z1 * sample_h_pre + (1. - z1) * pre_h_proposal

		context, alphacc, alpha_past = self.decoder.contextual_attention.get_context(sample_annotation, pre_h, alpha_past_pre, None)  # [batch, dim_ctx]
		emb_y_z_r_nl_vector = tf.tensordot(pre_h, self.decoder.U_hz_hr_nl, axes=1) + self.decoder.b_hz_hr_nl
		context_z_r_vector = tf.tensordot(context, self.decoder.W_c_z_r, axes=1)
		z_r_vector = tf.sigmoid(emb_y_z_r_nl_vector + context_z_r_vector)

		r2 = z_r_vector[:, :self.decoder.hidden_dim]
		z2 = z_r_vector[:, self.decoder.hidden_dim:]

		emb_y_h_nl_vector = tf.tensordot(pre_h, self.decoder.U_rh_nl, axes=1) + self.decoder.b_rh_nl
		emb_y_h_nl_vector *= r2
		context_h_vector = tf.tensordot(context, self.decoder.W_c_h_nl, axes=1)
		h_proposal = tf.tanh(emb_y_h_nl_vector + context_h_vector)
		h = z2 * pre_h + (1. - z2) * h_proposal

		h_t = h
		c_t = context
		alpha_past_t = alpha_past
		y_t_1 = emb
		logit_gru = tf.tensordot(h_t, self.Wh, axes=1) #+ self.bh
		logit_ctx = tf.tensordot(c_t, self.Wc, axes=1) #+ self.bc
		logit_pre = tf.tensordot(y_t_1, self.Wy, axes=1) #+ self.by
		logit = logit_pre + logit_ctx + logit_gru  + self.bh # batch x word_dim

		shape = tf.shape(input=logit)
		logit = tf.reshape(logit, [-1, shape[1]//2, 2])
		logit = tf.reduce_max(input_tensor=logit, axis=2)

		logit =  self.dropout(logit,training=training_mode)

		logit = tf.tensordot(logit, self.Wo, axes=1) + self.bo

		next_probs = tf.nn.softmax(logits=logit)
		next_word  = tf.reduce_max(input_tensor=tf.random.categorical(logits=next_probs, num_samples=1), axis=1)
		return next_probs, next_word, h_t, alpha_past_t, alphacc



class CALText_Model(tf.keras.Model): # Subclass from tf.keras.model
		def __init__(self,training): # Define All your Variables Here. And other configurations
				super(CALText_Model, self).__init__()
				self.dense_blocks=3
				self.levels_count=16
				self.growth=24

				#### decoder setup parameters ####
				self.hidden_dim=256
				self.word_dim=256
				self.dim_attend=512
				self.dense_encoder =  DenseEncoder(blocks=self.dense_blocks,level=self.levels_count, growth_rate=self.growth, istraining=training)
				self.contextual_attention = ContextualAttention(684, self.hidden_dim, self.dim_attend)
				self.decoder = Decoder(self.hidden_dim, self.word_dim, self.contextual_attention, 684)	##annotation.shape.as_list()[3]=684
				self.caltext = CALText(self.dense_encoder, self.contextual_attention, self.decoder, self.hidden_dim, self.word_dim, 684 ,num_classes ,istraining=training)


		def call(self, x, x_mask, y=None, y_mask=None, training=True): # Use the variables defined here.... this is forward prop
				annotation, anno_mask = self.dense_encoder.dense_net(x, x_mask)
				if(y==None):
					return annotation
				else:
					cost = self.caltext.get_cost(annotation, y, anno_mask, y_mask, gamma_val)
					return cost,annotation

		def get_hidden_state_0(self, anno):
				hidden_state_0 = tf.tanh(tf.tensordot(tf.reduce_mean(input_tensor=anno, axis=[1, 2]), self.caltext.Wa2h, axes=1) + self.caltext.ba2h)  # [batch, hidden_dim]
				return hidden_state_0

##########apply L2 regularization on weights
def get_loss(loss,model):
    #print(model.trainable_weights)
    for layer in model.trainable_weights:
      arr=(layer.name).split("/")
      if not arr[len(arr)-1].startswith('conv2d'):
        loss += lambda_val * tf.reduce_sum(input_tensor=tf.pow(layer, 2))
    return loss

###################

@tf.function(experimental_relax_shapes=True)
def get_word(next_w, next_state, next_alpha_past, ctx, model,training):
   return model.caltext.get_word(next_w, next_state, next_alpha_past, ctx,training)

def get_sample(ctx0, h_0, k , maxlen, stochastic, training, model):

		sample = []
		sample_score = []
		sample_att=[]
		live_k = 1
		dead_k = 0

		hyp_samples = [[]] * 1
		hyp_scores = np.zeros(live_k).astype('float32')
		hyp_states = []


		next_alpha_past = np.zeros((ctx0.shape[0], ctx0.shape[1], ctx0.shape[2])).astype('float32')
		emb_0 = np.zeros((ctx0.shape[0], 256))

		next_w = -1 * np.ones((1,)).astype('int64')

		next_state = h_0
		#tf.autograph.experimental.set_loop_options(shape_invariants=[(next_alpha_past, tf.TensorShape([None]))])

		for ii in range(maxlen):

			ctx = np.tile(ctx0, [live_k, 1, 1, 1])
			next_p, next_w, next_state, next_alpha_past,contexVec  = get_word(next_w, next_state, next_alpha_past, ctx, model,training)
			sample_att.append(contexVec[0,:,:])
			if stochastic:
				nw = next_w[0]
				sample.append(nw)
				sample_score += next_p[0, nw]
				if nw == 0:
					break
			else:

				cand_scores = hyp_scores[:, None] - np.log(next_p)
				cand_flat = cand_scores.flatten()
				ranks_flat = cand_flat.argsort()[:(k-dead_k)]
				voc_size = next_p.shape[1]

				assert voc_size==num_classes

				trans_indices = ranks_flat // voc_size
				word_indices = ranks_flat % voc_size
				costs = cand_flat[ranks_flat]
				new_hyp_samples = []
				new_hyp_scores = np.zeros(k-dead_k).astype('float32')
				new_hyp_states = []
				new_hyp_alpha_past = []

				for idx, [ti, wi] in enumerate(zip(trans_indices, word_indices)):
					new_hyp_samples.append(hyp_samples[ti]+[wi])
					new_hyp_scores[idx] = copy.copy(costs[idx])
					new_hyp_states.append(copy.copy(next_state[ti]))
					new_hyp_alpha_past.append(copy.copy(next_alpha_past[ti]))

				new_live_k = 0
				hyp_samples = []
				hyp_scores = []
				hyp_states = []
				hyp_alpha_past = []

				for idx in range(len(new_hyp_samples)):
					if new_hyp_samples[idx][-1] == 0: # <eol>
						sample.append(new_hyp_samples[idx])
						sample_score.append(new_hyp_scores[idx])
						dead_k += 1
					else:
						new_live_k += 1
						hyp_samples.append(new_hyp_samples[idx])
						hyp_scores.append(new_hyp_scores[idx])
						hyp_states.append(new_hyp_states[idx])
						hyp_alpha_past.append(new_hyp_alpha_past[idx])
				hyp_scores = np.array(hyp_scores)
				live_k = new_live_k

				if new_live_k < 1:
					break
				if dead_k >= k:
					break
                    
				next_w = np.array([w1[-1] for w1 in hyp_samples])
				next_state = np.array(hyp_states)
				next_alpha_past = np.array(hyp_alpha_past)

		if not stochastic:
			# dump every remaining one
			if live_k > 0:
				for idx in range(live_k):
					sample.append(hyp_samples[idx])
					sample_score.append(hyp_scores[idx])

		return sample, sample_score,sample_att


#######################Predict
@tf.function(experimental_relax_shapes=True)
def execute_model(xx,xx_mask,CALTEXT):

  anno = CALTEXT(xx,xx_mask, training=False)
  hidden_state_0 = CALTEXT.get_hidden_state_0(anno)
  return anno,hidden_state_0


def predict(CALTEXT, images, x_mask):
  # training=False is only needed if there are layers with different
  # behavior during training versus inference (e.g. Dropout).
  batch_loss=0
  img_ind=1
  for img_ind in range(len(images)):
    xx = images[img_ind][tf.newaxis, ... ]
    xx_mask = x_mask[img_ind][tf.newaxis, ... ]
    anno,hidden_state_0=execute_model(xx,xx_mask,CALTEXT)

    sample, score,hypalpha=get_sample(anno, hidden_state_0,10, 130, False, False, CALTEXT)


    score = score / np.array([len(s) for s in sample])
    ss = sample[score.argmin()]
    img_ind=img_ind+1

    ind=0
    num=int(len(ss)/2)

    ####   output string
    ind=0
    outstr=u''
    frames = []
    font = ImageFont.truetype("Jameel Noori Nastaleeq.ttf",60)
    worddicts_r=data.load_dict_picklefile("vocabulary.pkl")
    while (ind<len(ss)-1):
      k=(len(ss)-2)-ind
      outstr=outstr+worddicts_r[int(ss[k])]
      textimg = Image.new('RGB', (1400,100),(255,255,255))
      drawtext = ImageDraw.Draw(textimg)
      drawtext.text((20, 20), outstr ,(0,0,0),font=font)
      fig,axes=plt.subplots(2,1)
      axes[0].imshow(textimg)
      axes[0].axis('off')
      axes[1].axis('off')
      axes[1].imshow(xx[0,:,:],cmap='gray')
      visualization=resize(hypalpha[k], (100,800),anti_aliasing=True)
      axes[1].imshow(255-(255 * visualization), alpha=0.2)
      plt.axis('off')

      plt.savefig('res.png')
      frames.append(Image.fromarray(cv2.imread('res.png'), 'RGB'))
      ind=ind+1
    frame_one = frames[0]
    frame_one.save("vis.gif", format="GIF", append_images=frames,save_all=True, duration=300, loop=0)
    gif_image="vis.gif"
  return outstr,gif_image