File size: 30,792 Bytes
8764b41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
import streamlit as st
import json

# Set page configuration
st.set_page_config(
    page_title="tokeniser-py Demonstration",
    page_icon="πŸ”£",
    layout="wide",
)

# Custom CSS for better UI
st.markdown("""
<style>
    .main {
        background-color: #0e1117;
        color: white;
    }
    .stTextInput > div > div > input, .stTextArea > div > div > textarea {
        background-color: #1e2130;
        color: white;
        border: 1px solid #30343e;
        border-radius: 4px;
        padding: 10px;
    }
    .token-display {
        margin-top: 20px;
        padding: 15px;
        border-radius: 5px;
        background-color: #1e2130;
        line-height: 2;
        overflow-wrap: break-word;
    }
    .token {
        display: inline-block;
        padding: 2px 4px;
        margin: 2px;
        border-radius: 3px;
        position: relative;
        cursor: pointer;
        color: #0e1117 !important;
        font-weight: 600;
        text-shadow: 0px 0px 1px rgba(0,0,0,0.2);
    }
    .token:hover::after {
        content: attr(data-id);
        position: absolute;
        top: -25px;
        left: 0;
        background: #3c4356;
        color: white;
        padding: 2px 6px;
        border-radius: 3px;
        font-size: 12px;
        white-space: nowrap;
        z-index: 100;
    }
    .button-container {
        display: flex;
        gap: 10px;
        margin-bottom: 15px;
    }
    .stButton button {
        background-color: #2c313d;
        border: none;
        color: white;
    }
    .stButton button:hover {
        background-color: #3c4356;
    }
    .info-box {
        margin-top: 20px;
        padding: 20px;
        border-radius: 5px;
        background-color: #1e2130;
        font-size: 14px;
        line-height: 1.6;
    }
    .quote {
        border-left: 4px solid #00ba7c;
        padding-left: 10px;
        margin: 10px 0;
        color: #e0e0e0;
    }
    .highlight {
        background-color: rgba(0, 186, 124, 0.15);
        padding: 2px 4px;
        border-radius: 3px;
        font-weight: 500;
    }
    .comparison-table {
        background-color: #262b38;
        padding: 15px;
        border-radius: 5px;
        margin: 15px 0;
    }
    .section-title {
        font-weight: 600;
        margin-top: 15px;
        margin-bottom: 8px;
        color: #00ba7c;
    }
    .stRadio [role=radiogroup] {
        background-color: #1e2130;
        padding: 5px;
        border-radius: 5px;
    }
    .header-container {
        display: flex;
        justify-content: space-between;
        align-items: center;
        padding: 10px 0;
        margin-top: -80px;
    }
    .stats-container {
        display: flex;
        gap: 20px;
        padding: 10px;
        background-color: #1e2130;
        border-radius: 5px;
        margin-bottom: 20px;
    }
    .stat-box {
        padding: 10px;
    }
    .stat-label {
        font-size: 0.9em;
        color: #aaa;
    }
    .stat-value {
        font-size: 1.5em;
        font-weight: bold;
    }
    a {
        color: #00ba7c !important;
        text-decoration: none;
    }
    a:hover {
        text-decoration: underline;
    }
    .monospace {
        font-family: monospace;
    }
    .note-box {
        background-color: rgba(255, 204, 0, 0.1);
        border-left: 3px solid rgba(255, 204, 0, 0.7);
        padding: 10px 15px;
        margin: 10px 0;
        border-radius: 0 5px 5px 0;
    }
    .buttons-row {
        display: flex;
        gap: 10px;
    }
    /* Enhanced bullet points styling */
    .bullet-point {
        display: flex;
        align-items: baseline;
        margin: 8px 0;
        padding: 4px 0;
    }
    .bullet-point-icon {
        display: inline-flex;
        align-items: center;
        justify-content: center;
        min-width: 24px;
        height: 24px;
        background-color: rgba(0, 186, 124, 0.2);
        color: #00ba7c;
        border-radius: 50%;
        margin-right: 10px;
        font-weight: bold;
    }
    .secondary-bullet {
        background-color: rgba(0, 186, 124, 0.1);
    }
    .comparison-item {
        display: flex;
        align-items: baseline;
        margin: 10px 0;
        padding: 6px 0;
    }
    .comparison-icon {
        display: inline-flex;
        align-items: center;
        justify-content: center;
        min-width: 28px;
        height: 28px;
        background-color: rgba(0, 186, 124, 0.25);
        color: #00ba7c;
        border-radius: 50%;
        margin-right: 12px;
        font-weight: bold;
    }
    .comparison-text {
        flex: 1;
    }
    .learn-more-section {
        background-color: #1e2130;
        border-radius: 5px;
        padding: 20px;
    }
    .icon-wrapper {
        display: inline-flex;
        align-items: center;
        justify-content: center;
    }
    .colored-icon {
        display: inline-block;
        color: #00ba7c;
        font-size: 1.4em;
        margin-right: 10px;
    }
    .library-feature {
        display: flex;
        align-items: baseline;
        margin: 10px 0;
    }
    .feature-dot {
        min-width: 18px;
        height: 18px;
        background-color: rgba(0, 186, 124, 0.2);
        border-radius: 50%;
        margin-right: 10px;
        display: flex;
        align-items: center;
        justify-content: center;
    }
    .feature-text {
        flex: 1;
    }
    .sub-feature {
        display: flex;
        padding-left: 30px;
        margin: 8px 0;
        align-items: baseline;
    }
    .sub-feature-dot {
        min-width: 12px;
        height: 12px;
        background-color: rgba(0, 186, 124, 0.1);
        border-radius: 50%;
        margin-right: 10px;
    }
    .code-block {
        background-color: #0e1117;
        padding: 15px;
        border-radius: 5px;
        font-family: 'Courier New', monospace;
        margin: 15px 0;
        color: #e0e0e0;
        border-left: 3px solid #00ba7c;
    }
    .code-line {
        padding: 2px 0;
        display: block;
    }
    .code-import {
        color: #ff79c6;
    }
    .code-class {
        color: #8be9fd;
    }
    .code-function {
        color: #50fa7b;
    }
    .code-var {
        color: #f1fa8c;
    }
    .code-string {
        color: #f1fa8c;
    }
    .code-comment {
        color: #6272a4;
    }
    .link-top-a{
        color: rgb(72, 140, 255) !important;
        font-size: 18px;
    }
    .link-top{
        color: rgb(180, 220, 255) !important;
        font-size: 18px;
    }
</style>
""", unsafe_allow_html=True)

# Header with logo and title
st.markdown("""
<div class="header-container">
    <div>
        <h1>tokeniser-py πŸ”£</h1>
        <a href = "https://github.com/Tasmay-Tibrewal/tokeniser-py" class="link-top-a" style="display: inline;"><span style="background-color:rgba(100,146,154,0.17); padding:2px 4px; border-radius:3px;">Library GitHub</span></a>
        <p class="link-top" style="display: inline;"> | </p>
        <a href = "https://huggingface.co/datasets/Tasmay-Tib/Tokeniser" class="link-top-a"style="display: inline;"><span style="background-color:rgba(100,146,154,0.17); padding:2px 4px; border-radius:3px;">HF Dataset</span></a>
        <p class="link-top" style="display: inline;"> | </p>
        <a href = "https://github.com/Tasmay-Tibrewal/Tokeniser" class="link-top-a"style="display: inline;"><span style="background-color:rgba(100,146,154,0.17); padding:2px 4px; border-radius:3px;">GitHub Dataset (chunked)</span></a>
        <p class="link-top" style="display: inline;"> | </p>
        <a href = "https://github.com/Tasmay-Tibrewal/Tokeniser-imp" class="link-top-a"style="display: inline;"><span style="background-color:rgba(100,146,154,0.17); padding:2px 4px; border-radius:3px;">GitHub Imp Files</span></a>
        <p class="link-top" style="display: inline;"> | </p>
        <a href = "https://pypi.org/project/tokeniser-py/" class="link-top-a"style="display: inline;"><span style="background-color:rgba(100,146,154,0.17); padding:2px 4px; border-radius:3px;">PyPI Package</span></a>
        <p></p>
        <p style="font-size: 20px;"><strong>Learn about language model tokenization</strong></p>
        <p style="font-size: 17px; margin-bottom: 5px;">
        <span style="background-color:rgba(154, 187, 255,0.4); padding:2px 4px; border-radius:3px;">tokeniser-py's</span> custom tokenizer processes text using tokens, which are common sequences of characters found in a set of text. The model learns to understand the statistical relationships
        between these tokens, and excel at producing the next token in a sequence of tokens. You can use the tool below to understand how a piece of text might be tokenized by a language model, and the total count of tokens in that piece of text.
        </p>
    </div>
</div>
""", unsafe_allow_html=True)

# Initialize tokenizer
@st.cache_resource
def load_tokenizer(ln="1b", token_ordered=False):
    try:
        from tokeniser import Tokeniser
        # Pass parameters based on selection
        return Tokeniser(ln=ln, token_ordered=token_ordered)
    except Exception as e:
        st.error(f"Error loading tokenizer: {e}")
        return None

# Information about tokenization
# st.markdown("""
# """)

# st.markdown("")
# st.markdown("")
st.markdown("###### Model")
# Create tabs for different models
model_version = st.radio(
    "",
    ["Default (1b model unordered)", "1b model ordered", "0.5b model unordered", "0.5b model ordered"],
    horizontal=True
)

# Map selected model version to parameters
if model_version == "Default (1b model unordered)":
    ln_param = "1b"
    ordered_param = False
elif model_version == "1b model ordered":
    ln_param = "1b"
    ordered_param = True
elif model_version == "0.5b model unordered":
    ln_param = "0.5b"
    ordered_param = False
else:
    ln_param = "0.5b"
    ordered_param = True

# Load tokenizer with selected parameters
tokenizer = load_tokenizer(ln=ln_param, token_ordered=ordered_param)

# Function to generate consistent pastel colors for tokens
@st.cache_data
def get_token_colors(tokens):
    # Use hash of token to get consistent colors
    colors = {}
    for token in set(tokens):
        # Generate a pastel color based on the hash of the token
        hash_val = hash(token) % 360
        colors[token] = f"hsl({hash_val}, 80%, 75%)"
    return colors

# Function to display tokens with colors and hover effects
def display_colored_tokens(tokens, token_ids, token_colors):
    html = ""
    for i, (token, token_id) in enumerate(zip(tokens, token_ids)):
        # Handle special characters for display
        if token == '\n':
            display_token = '\\n'
        elif token == '\t':
            display_token = '\\t'
        else:
            display_token = token.replace("<", "&lt;").replace(">", "&gt;").replace(" ", "&nbsp;")
        
        html += f'<span class="token" style="background-color: {token_colors[token]};" data-id="{token_id}">{display_token}</span>'
    return html

# Function to display token IDs
def display_token_ids(token_ids):
    return f'<div class="monospace">{json.dumps(token_ids)}</div>'

# Initialize session state for text input if not exists
if 'text_input' not in st.session_state:
    st.session_state.text_input = "Hi I am Tasmay, I am a third year undergraduate at IIT Kharagpur and this is my tokeniser. Please enter your text in this box"
    st.session_state.text_ind = 0
    print(st.session_state.text_ind)

st.markdown("###### Enter text to tokenize")
# Text input area
text_input = st.text_area(
    "",
    st.session_state.text_input,
    height=150,
    placeholder="Please enter the text to tokenise",
    # on_change=handle_text_change,
)

def clear_text():
    st.session_state.text_input = ""

def show_example():
    examples = [
        "Hi I am Tasmay, I am a third year undergraduate at IIT Kharagpur and this is my tokeniser. Please enter your text in this box",
        "Wop, wop, wop, wop, wop, I'ma do my stuff",
        "I got loyalty, got royalty inside my DNA",
        "Sit down, be humble",
        "We gon' be alright"
    ]
    st.session_state.text_ind = (st.session_state.text_ind + 1) % len(examples)
    st.session_state.text_input = examples[st.session_state.text_ind]

# Add CSS for fixed-width buttons that wrap to new line
st.markdown("""
<style>
    div[data-testid="stHorizontalBlock"] {
        flex-wrap: wrap;
        gap: 10px;
        margin-top: -15px;
        padding-top: 0px;
        margin-bottom: -15px;
    }
    
    div[data-testid="stHorizontalBlock"] > div {
        flex: 0 0 auto !important;
        width: auto !important;
        min-width: initial !important;
    }
    
    div[data-testid="stHorizontalBlock"] button {
        width: 80px;  /* Fixed width for "Clear" button */
        margin-top: 0px;
    }
    
    div[data-testid="stHorizontalBlock"] div:nth-child(2) button {
        margin-top: 0px;
        width: 150px;  /* Fixed width for "Show example" button */
    }
</style>
""", unsafe_allow_html=True)

# Create a horizontal block for buttons
button_container = st.container()
with button_container:
    cols = st.columns([1, 1, 10])
    with cols[0]:
        st.button("Clear", on_click=clear_text)
    with cols[1]:
        st.button("Show example", on_click=show_example)

# Process the text for tokenization
if tokenizer:
    try:
        tokens, count = tokenizer.tokenise(text_input)
        token_ids = tokenizer.token_ids(tokens)
        num_tokens = len(tokens)
        num_chars = len(text_input)
        chars_per_token = num_chars / num_tokens if num_tokens > 0 else 0
    except Exception as e:
        st.error(f"Error tokenizing text: {e}")
        tokens = []
        token_ids = []
        num_tokens = 0
        num_chars = 0
        chars_per_token = 0

# Inject custom CSS
st.markdown(
    """
    <style>
    div[role="radiogroup"] > label {
        height: 40px !important;
        padding-left: 10px;
        display: flex;
        align-items: center;
    }
    div[role="radiogroup"] {
        margin-top: -30px;
        margin-bottom: 0px;
    }
    div[data-testid="stTextArea"] {
        margin-top: -30px;
    }
    </style>
    """,
    unsafe_allow_html=True
)

# st.markdown("###### View")

# Create view toggle
view_option = st.radio(
    "",
    ["Text", "Token IDs"],
    horizontal=True
)

# Get token colors if we have tokens
token_colors = get_token_colors(tokens) if tokens else {}

# Always display the token display, even if empty
if view_option == "Text":
    if tokens:
        st.markdown(f'<div class="token-display" style="margin-top: -25px;">{display_colored_tokens(tokens, token_ids, token_colors)}</div>', unsafe_allow_html=True)
    else:
        st.markdown(f'<div class="token-display" style="margin-top: -25px;">No tokens to display</div>', unsafe_allow_html=True)
else:
    if token_ids:
        st.markdown(f'<div class="token-display" style="margin-top: -25px;">{display_token_ids(token_ids)}</div>', unsafe_allow_html=True)
    else:
        st.markdown(f'<div class="token-display" style="margin-top: -25px;">No token IDs to display</div>', unsafe_allow_html=True)

# Always display the stats container, even if empty
st.markdown("""
<div class="stats-container" style="margin-top: -10px; margin-bottom: 10px;">
    <div class="stat-box">
        <div class="stat-label">Tokens</div>
        <div class="stat-value">{}</div>
    </div>
    <div class="stat-box">
        <div class="stat-label">Characters</div>
        <div class="stat-value">{}</div>
    </div>
    <div class="stat-box">
        <div class="stat-label">Chars per token</div>
        <div class="stat-value">{:.2f}</div>
    </div>
</div>
""".format(num_tokens, num_chars, chars_per_token), 
unsafe_allow_html=True)

# Information box split into multiple markdown elements for better rendering
# st.markdown("<div class='info-box'>", unsafe_allow_html=True)

# Section 1: Tokenization Efficiency
st.markdown("---")
st.markdown("<h3 style='color:#00ba7c; margin-top:10px;'>Tokenization Efficiency</h3>", unsafe_allow_html=True)

# Quote block
st.markdown("""
<div style="border-left: 4px solid #00ba7c; padding-left: 15px; margin: 15px 0; color: #e0e0e0;">
    A helpful rule of thumb is that one token generally corresponds to ~4 characters of text for 
    common English text. This translates to roughly ΒΎ of a word (so 100 tokens ~= 75 words).
    <div style="font-style: italic; color: #aaa; margin-top: 5px;">β€” OpenAI</div>
</div>
""", unsafe_allow_html=True)

# Section 2: Our Analysis
st.markdown("<h3 style='color:#00ba7c; margin-top:20px;'>Our Analysis</h3>", unsafe_allow_html=True)
st.markdown("<p>We've conducted a thorough analysis of token efficiency of our tokeniser against different tokenizers:</p>", unsafe_allow_html=True)

# Analysis points with enhanced styling
st.markdown("""
<div class="bullet-point">
    <div class="bullet-point-icon">β€’</div>
    <div>The <span style="background-color:rgba(0,186,124,0.15); padding:2px 4px; border-radius:3px;">GPT-2 tokenizer</span> corresponds to approximately <span style="background-color:rgba(0,186,124,0.15); padding:2px 4px; border-radius:3px;">3.9 characters per token</span></div>
</div>

<div class="bullet-point">
    <div class="bullet-point-icon">β€’</div>
    <div>English text corpus typically has average word lengths ranging from <span style="background-color:rgba(0,186,124,0.15); padding:2px 4px; border-radius:3px;">4.7 to 5.1 characters</span>, which was observed to be <span style="background-color:rgba(0,186,124,0.4); padding:2px 4px; border-radius:3px;">4.73-4.79 in our dataset</span></div>
</div>

<div class="bullet-point">
    <div class="bullet-point-icon">β€’</div>
    <div>Thus for our dataset, traditional tokenizers convert to roughly <span style="background-color:rgba(0,186,124,0.4); padding:2px 4px; border-radius:3px;">⁴⁄₅ of a word</span> (100 tokens β‰ˆ 80 words)</div>
</div>
""", unsafe_allow_html=True)

# Section 3: tokeniser-py Efficiency
st.markdown("<h3 style='color:#00ba7c; margin-top:20px;'><u>tokeniser-py</u> efficiency</h3>", unsafe_allow_html=True)
st.markdown("<p>Our tokenizer demonstrates different characteristics:</p>", unsafe_allow_html=True)

# Efficiency points with enhanced styling
st.markdown("""
<div class="bullet-point">
    <div class="bullet-point-icon">β€’</div>
    <div>Average token size of <span style="background-color:rgba(0,186,124,0.15); padding:2px 4px; border-radius:3px;">~2.52 characters**</span> across all token types</div>
</div>

<div class="bullet-point">
    <div class="bullet-point-icon">β€’</div>
    <div>For alphanumeric tokens only: <span style="background-color:rgba(0,186,124,0.4); padding:2px 4px; border-radius:3px;">~3.97 characters per token</span></div>
</div>

<div class="bullet-point">
    <div class="bullet-point-icon">β€’</div>
    <div>This translates to approximately <span style="background-color:rgba(0,186,124,0.4); padding:2px 4px; border-radius:3px;">⁹⁄₁₀ of a word</span> (100 tokens β‰ˆ 90 words)</div>
</div>
""", unsafe_allow_html=True)

# Section 4: Real-world Comparison with completely redesigned styling
st.markdown("""
<div style="background-color:#262b38; padding:20px; border-radius:5px; margin:25px 0;">
    <h3 style="color:#00ba7c; margin-top:0px; margin-bottom:15px; font-size:1.3em;">Real-world Comparison</h3>
    <p style="margin-bottom:15px;">We tested a 28-page blog post across different tokenizers:</p>
    <div class="comparison-item">
        <div class="comparison-icon">1</div>
        <div class="comparison-text">
            <span style="background-color:rgba(0,186,124,0.15); padding:2px 4px; border-radius:3px; font-weight:500;">GPT-4o/GPT-4:</span> 
            <span style="font-size:1.1em; margin-left:8px;">~10.4k tokens</span>
        </div>
    </div>
    <div class="comparison-item">
        <div class="comparison-icon">2</div>
        <div class="comparison-text">
            <span style="background-color:rgba(0,186,124,0.15); padding:2px 4px; border-radius:3px; font-weight:500;">GPT-3:</span> 
            <span style="font-size:1.1em; margin-left:8px;">~12.1k tokens</span>
        </div>
    </div>
    <div class="comparison-item">
        <div class="comparison-icon">3</div>
        <div class="comparison-text">
            <span style="background-color:rgba(0,186,124,0.15); padding:2px 4px; border-radius:3px; font-weight:500;">tokeniser-py:</span> 
            <span style="font-size:1.1em; margin-left:8px;">~18.8k tokens</span> 
            <span style="color:#aaa;">(including ~8.4k space tokens and ~2.6k other special-char based tokens)</span>
        </div>
    </div>
    <div class="comparison-item">
        <div class="comparison-icon">4</div>
        <div class="comparison-text">
            <span style="background-color:rgba(0,186,124,0.15); padding:2px 4px; border-radius:3px; font-weight:500;">tokeniser-py (alphanumeric only):</span> 
            <span style="font-size:1.1em; margin-left:8px;">~7.8k tokens</span>
        </div>
    </div>
    <div class="comparison-item">
        <div class="comparison-icon">5</div>
        <div class="comparison-text">
            <span style="background-color:rgba(0,186,124,0.15); padding:2px 4px; border-radius:3px; font-weight:500;">GPT-4/GPT-4o (alphanumeric):</span> 
            <span style="font-size:1.1em; margin-left:8px;">~8k tokens</span>
        </div>
    </div>
</div>
""", unsafe_allow_html=True)

# Note box with enhanced styling
st.markdown("""
<div style="background-color:rgba(255,204,0,0.1); border-left:3px solid rgba(255,204,0,0.7); padding:15px; margin:20px 0; border-radius:0 5px 5px 0;">
    <div style="font-size:18px; font-weight:bold; margin-bottom:12px; color:#ffcc00;">Note:</div>
    <p style="line-height:2.2;"><span class="bullet-point-icon" style="background-color:rgba(255,204,0,0.2); color:#ffcc00;">β€’</span>
    <span style="background-color:rgba(255,204,0,0.15); padding:2px 4px; border-radius:3px;">**2.52 characters</span> is the average (adjusted frequency)-weighted token size i.e. we weigh the token size by their true occurences, obtained after adjusting their observed occurences by their super-tokens' occurences.<br>
    <span class="bullet-point-icon" style="background-color:rgba(255,204,0,0.15); color:#ffcc00;">β€’</span>
    <span>A super-token of a token say '<span style="background-color:rgba(255,204,0,0.15); padding:2px 4px; border-radius:3px;">e</span>' is any token which contains '<span style="background-color:rgba(255,204,0,0.15); padding:2px 4px; border-radius:3px;">e</span>' (like '<span style="background-color:rgba(255,204,0,0.15); padding:2px 4px; border-radius:3px;">ear</span>', '<span style="background-color:rgba(255,204,0,0.15); padding:2px 4px; border-radius:3px;">ears</span>', '<span style="background-color:rgba(255,204,0,0.15); padding:2px 4px; border-radius:3px;">years</span>', etc.). While weighing the token length we find that a smaller tokens have an undue higher weightage due their occurences in super-tokens being added up as well.
    To adjust this we hierarchially subtract the occurence of a token from its super tokens to get a True frequency.</span><br>
    <span class="bullet-point-icon" style="background-color:rgba(255,204,0,0.15); color:#ffcc00;">β€’</span>
    <span>Un-adjusted frequency weighting gives an average size of <span style="background-color:rgba(255,204,0,0.15); padding:2px 4px; border-radius:3px;">~2.2 characters</span> per token, and a raw (un-weighted) average results in <span style="background-color:rgba(255,204,0,0.15); padding:2px 4px; border-radius:3px;">~4.6-4.7 chars</span> per token.</span><br>
    <span class="bullet-point-icon" style="background-color:rgba(255,204,0,0.15); color:#ffcc00;">β€’</span>
    <span>Our tokenization strategy separates non-underscore special characters from alphanumeric tokens.</span><br>
    <span class="bullet-point-icon" style="background-color:rgba(255,204,0,0.15); color:#ffcc00;">β€’</span>
    <span>We define alphanumeric tokens as any word that doesn't contain special characters (except underscores).</span><br>
    <span class="bullet-point-icon" style="background-color:rgba(255,204,0,0.15); color:#ffcc00;">β€’</span>
    <span>For OpenAI's tokens, we considered any token containing at least one alphanumeric character (excluding underscores) as an alphanumeric token.</span><br>
    <span class="bullet-point-icon" style="background-color:rgba(255,204,0,0.15); color:#ffcc00;">β€’</span>
    <span>This difference is due to the different special characters handling methodology followed in both tokeniser.</span></p>
</div>
""", unsafe_allow_html=True)

# Section 5: Design Philosophy with enhanced styling
st.markdown("<h3 style='color:#00ba7c; margin-top:20px;'>Design Philosophy</h3>", unsafe_allow_html=True)
st.markdown("<p>Our approach prioritizes semantic representation over token count minimization:</p>", unsafe_allow_html=True)

# Philosophy points with enhanced styling
st.markdown("""
<div class="bullet-point">
    <div class="bullet-point-icon">β€’</div>
    <div>We consciously separate special characters from alphanumeric tokens</div>
</div>

<div class="bullet-point">
    <div class="bullet-point-icon">β€’</div>
    <div>This provides more available alphanumeric tokens in the vocabulary</div>
</div>

<div class="bullet-point">
    <div class="bullet-point-icon">β€’</div>
    <div>While this may increase total token count, it improves semantic representation</div>
</div>

<div class="bullet-point">
    <div class="bullet-point-icon">β€’</div>
    <div>Our design philosophy favors representation quality over token count minimization</div>
</div>
""", unsafe_allow_html=True)

# Footer link
st.markdown("""
<p style="margin-top:20px;">
    Need a programmatic interface for tokenizing text? Check out our
    <a href="https://pypi.org/project/tokeniser-py/">tokeniser-py</a> package for Python.
</p>
</div>
""", unsafe_allow_html=True)

# Footer with additional information
st.markdown("---")
st.markdown("""<h2 style='color:#00ba7c; margin-top:0px;'>About tokeniser-py</h2>

A high-performance, fully custom tokeniser built from scratch β€” no BPE, no existing NLP tokenisation scheme. 
This tokeniser is based on a unique algorithm developed independently and trained on over 1 billion tokens 
from the SlimPajama dataset (Val + Test), providing an efficient, interpretable, and extendable tokenisation pipeline.

<div class="library-feature">
    <div class="feature-dot">β€’</div>
    <div class="feature-text"><strong>Tokeniser built on a vocabulary of 131,072 tokens</strong></div>
</div>

<div class="library-feature">
    <div class="feature-dot">β€’</div>
    <div class="feature-text"><strong>Two versions of vocab:</strong> <code>0.5B</code> (Validation-only data) and <code>1B</code> (Validation + Test data)</div>
</div>

<div class="library-feature">
    <div class="feature-dot">β€’</div>
    <div class="feature-text"><strong>Token vocab built via a custom algorithm</strong> β€” no Byte Pair Encoding (BPE)</div>
</div>

<div class="library-feature">
    <div class="feature-dot">β€’</div>
    <div class="feature-text"><strong>Lightweight JSON format</strong> for token maps & token count maps</div>
</div>

<div class="library-feature">
    <div class="feature-dot">β€’</div>
    <div class="feature-text"><strong>Ready for integration</strong> into any LLM pre-tokenisation pipeline</div>
</div>

[GitHub Repository](https://github.com/Tasmay-Tibrewal/tokeniser-py) | [PyPI Package](https://pypi.org/project/tokeniser-py/)
""", unsafe_allow_html=True)

import streamlit as st

# Add explanation of the library in expandable section
with st.expander("Learn more about tokeniser-py"):
    st.markdown("""
    ### πŸš€ What This Library Offers
    
    - Tokeniser built on a vocabulary of **131,072 tokens**
    - Two versions of vocab:
      - `0.5B`: Validation-only data
      - `1B`: Validation + Test data
    - Token vocab built via a **custom algorithm** β€” no Byte Pair Encoding (BPE)
    - Tokenisation logic includes:
      - Token lookup from pre-generated token map
      - Dynamic programming-based segmentation for out-of-vocab tokens
      - One-hot encoding (NumPy or PyTorch)
      - Visualisation utilities for tokens and token IDs
    - Lightweight JSON format for token maps & token count maps
    - Ready for integration into any LLM pre-tokenisation pipeline
    """)
    
    # Add custom CSS
    st.markdown("""
    <style>
    div.stCodeBlock {
        background-color: #1a1c24 !important;
        border-radius: 10px;
        padding-left: 25px;
        padding-top: 15px;
        padding-bottom: 15px;
    }
    pre.language-python {
        background-color: #1a1c24 !important;
        border-radius: 10px;
    }
    .code-header {
        font-size: 1.5em;
        font-weight: bold;
        margin-top: 0em;
        margin-bottom: 0.5em;
        display: flex;
        align-items: center;
    }
    .code-block {
        background-color: #1a1c24;
        border-radius: 5px;
        padding: 1em;
        margin-bottom: 1em;
        font-family: 'Courier New', monospace;
        white-space: pre;
        color: #d4d4d4;
        overflow-x: auto;
        line-height: 1.5;
    }
    .keyword { color: #c586c0; }
    .string { color: #CE9178; }
    .function { color: #4ec9b0; }
    .parenthesis {color: #ffd700;}
    .var {color: #8cdcfe;}
    </style>
    """, unsafe_allow_html=True)
    
    # Code header and block with simpler HTML
    st.markdown("""
    <div class="code-header">πŸ› οΈ Usage</div>
    <pre class="code-block"><span class="keyword">from</span> <span class="function">tokeniser</span> <span class="keyword">import</span> <span class="function">Tokeniser</span><br>
<span class="var">t</span> = <span class="function">Tokeniser</span><span class="parenthesis">()</span><br>
<span class="var">tokens</span>, <span class="var">count</span> = <span class="var">t</span>.<span class="function">tokenise</span><span class="parenthesis">(</span><span class="string">"Your input text here."</span><span class="parenthesis">)</span><br>
<span class="var">token_ids</span> = <span class="var">t</span>.<span class="function">token_ids</span><span class="parenthesis">(</span><span class="var">tokens</span><span class="parenthesis">)</span></pre>
    """, unsafe_allow_html=True)

    st.markdown("""
    Use `t.one_hot_tokens(token_ids)` for NumPy-based one-hot encoding, or `op='torch'` for PyTorch.
    
    ### πŸ“ Vocab Files
    
    - `ordered_tokenizer_1b_val_test_data.json` β€” Ordered tokens (1B data)
    - `unordered_tokenizer_1b_val_test_data.json` β€” Unordered tokens (1B)
    - `count_tokenizer_1b_val_test_data.json` β€” Token counts (1B)
    - Similar structure for 0.5B val-only version
    """)