File size: 6,776 Bytes
6b448ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tempfile
import unittest

import torch

from diffusers import UNet2DConditionModel
from diffusers.training_utils import EMAModel
from diffusers.utils.testing_utils import skip_mps, torch_device


class EMAModelTests(unittest.TestCase):
    model_id = "hf-internal-testing/tiny-stable-diffusion-pipe"
    batch_size = 1
    prompt_length = 77
    text_encoder_hidden_dim = 32
    num_in_channels = 4
    latent_height = latent_width = 64
    generator = torch.manual_seed(0)

    def get_models(self, decay=0.9999):
        unet = UNet2DConditionModel.from_pretrained(self.model_id, subfolder="unet")
        unet = unet.to(torch_device)
        ema_unet = EMAModel(unet.parameters(), decay=decay, model_cls=UNet2DConditionModel, model_config=unet.config)
        return unet, ema_unet

    def get_dummy_inputs(self):
        noisy_latents = torch.randn(
            self.batch_size, self.num_in_channels, self.latent_height, self.latent_width, generator=self.generator
        ).to(torch_device)
        timesteps = torch.randint(0, 1000, size=(self.batch_size,), generator=self.generator).to(torch_device)
        encoder_hidden_states = torch.randn(
            self.batch_size, self.prompt_length, self.text_encoder_hidden_dim, generator=self.generator
        ).to(torch_device)
        return noisy_latents, timesteps, encoder_hidden_states

    def simulate_backprop(self, unet):
        updated_state_dict = {}
        for k, param in unet.state_dict().items():
            updated_param = torch.randn_like(param) + (param * torch.randn_like(param))
            updated_state_dict.update({k: updated_param})
        unet.load_state_dict(updated_state_dict)
        return unet

    def test_optimization_steps_updated(self):
        unet, ema_unet = self.get_models()
        # Take the first (hypothetical) EMA step.
        ema_unet.step(unet.parameters())
        assert ema_unet.optimization_step == 1

        # Take two more.
        for _ in range(2):
            ema_unet.step(unet.parameters())
        assert ema_unet.optimization_step == 3

    def test_shadow_params_not_updated(self):
        unet, ema_unet = self.get_models()
        # Since the `unet` is not being updated (i.e., backprop'd)
        # there won't be any difference between the `params` of `unet`
        # and `ema_unet` even if we call `ema_unet.step(unet.parameters())`.
        ema_unet.step(unet.parameters())
        orig_params = list(unet.parameters())
        for s_param, param in zip(ema_unet.shadow_params, orig_params):
            assert torch.allclose(s_param, param)

        # The above holds true even if we call `ema.step()` multiple times since
        # `unet` params are still not being updated.
        for _ in range(4):
            ema_unet.step(unet.parameters())
        for s_param, param in zip(ema_unet.shadow_params, orig_params):
            assert torch.allclose(s_param, param)

    def test_shadow_params_updated(self):
        unet, ema_unet = self.get_models()
        # Here we simulate the parameter updates for `unet`. Since there might
        # be some parameters which are initialized to zero we take extra care to
        # initialize their values to something non-zero before the multiplication.
        unet_pseudo_updated_step_one = self.simulate_backprop(unet)

        # Take the EMA step.
        ema_unet.step(unet_pseudo_updated_step_one.parameters())

        # Now the EMA'd parameters won't be equal to the original model parameters.
        orig_params = list(unet_pseudo_updated_step_one.parameters())
        for s_param, param in zip(ema_unet.shadow_params, orig_params):
            assert ~torch.allclose(s_param, param)

        # Ensure this is the case when we take multiple EMA steps.
        for _ in range(4):
            ema_unet.step(unet.parameters())
        for s_param, param in zip(ema_unet.shadow_params, orig_params):
            assert ~torch.allclose(s_param, param)

    def test_consecutive_shadow_params_updated(self):
        # If we call EMA step after a backpropagation consecutively for two times,
        # the shadow params from those two steps should be different.
        unet, ema_unet = self.get_models()

        # First backprop + EMA
        unet_step_one = self.simulate_backprop(unet)
        ema_unet.step(unet_step_one.parameters())
        step_one_shadow_params = ema_unet.shadow_params

        # Second backprop + EMA
        unet_step_two = self.simulate_backprop(unet_step_one)
        ema_unet.step(unet_step_two.parameters())
        step_two_shadow_params = ema_unet.shadow_params

        for step_one, step_two in zip(step_one_shadow_params, step_two_shadow_params):
            assert ~torch.allclose(step_one, step_two)

    def test_zero_decay(self):
        # If there's no decay even if there are backprops, EMA steps
        # won't take any effect i.e., the shadow params would remain the
        # same.
        unet, ema_unet = self.get_models(decay=0.0)
        unet_step_one = self.simulate_backprop(unet)
        ema_unet.step(unet_step_one.parameters())
        step_one_shadow_params = ema_unet.shadow_params

        unet_step_two = self.simulate_backprop(unet_step_one)
        ema_unet.step(unet_step_two.parameters())
        step_two_shadow_params = ema_unet.shadow_params

        for step_one, step_two in zip(step_one_shadow_params, step_two_shadow_params):
            assert torch.allclose(step_one, step_two)

    @skip_mps
    def test_serialization(self):
        unet, ema_unet = self.get_models()
        noisy_latents, timesteps, encoder_hidden_states = self.get_dummy_inputs()

        with tempfile.TemporaryDirectory() as tmpdir:
            ema_unet.save_pretrained(tmpdir)
            loaded_unet = UNet2DConditionModel.from_pretrained(tmpdir, model_cls=UNet2DConditionModel)
            loaded_unet = loaded_unet.to(unet.device)

        # Since no EMA step has been performed the outputs should match.
        output = unet(noisy_latents, timesteps, encoder_hidden_states).sample
        output_loaded = loaded_unet(noisy_latents, timesteps, encoder_hidden_states).sample

        assert torch.allclose(output, output_loaded, atol=1e-4)