File size: 9,349 Bytes
7ff1fe0
4120946
59f00d1
 
7ff1fe0
6fa6b83
59f00d1
7ff1fe0
 
 
 
6b07ee4
 
b31816e
 
d7a52dd
 
626c6ea
d7a52dd
fc4d327
7ff1fe0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7f929e
6b07ee4
626c6ea
007ec3d
25fedb7
8acf519
25fedb7
 
8acf519
25fedb7
d7c0eb6
 
 
 
 
 
 
 
25fedb7
 
 
8acf519
25fedb7
fbc5903
 
 
 
25fedb7
 
 
007ec3d
fbc5903
007ec3d
 
1054a05
626c6ea
007ec3d
25fedb7
8acf519
25fedb7
 
8acf519
25fedb7
d7c0eb6
 
 
 
 
 
 
 
25fedb7
 
 
8acf519
25fedb7
fbc5903
 
 
 
25fedb7
 
 
007ec3d
fbc5903
007ec3d
 
1054a05
fc4d327
 
 
 
 
 
 
b7f929e
 
8acf519
fbc5903
b7f929e
8acf519
fbc5903
b7f929e
8acf519
71befd1
 
b7f929e
28a310a
 
48c823d
7b3a151
59f00d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6e6567
bf59cf6
6fa6b83
d7a52dd
6fa6b83
d7a52dd
6fa6b83
 
 
d7a52dd
 
6fa6b83
 
 
 
 
d7a52dd
 
6fa6b83
 
 
 
d7a52dd
 
6fa6b83
d7a52dd
6fa6b83
 
 
 
d7a52dd
6fa6b83
 
 
d7a52dd
 
 
6fa6b83
 
 
 
d7a52dd
 
 
6fa6b83
 
 
 
d7a52dd
 
 
6fa6b83
d7a52dd
d55a841
 
d7a52dd
 
 
d55a841
 
 
d7a52dd
 
 
d55a841
 
 
 
d7a52dd
 
 
 
d55a841
 
 
 
d7a52dd
 
 
 
 
 
 
 
835f767
d7a52dd
835f767
19299e4
d7a52dd
 
 
835f767
 
 
d7a52dd
 
835f767
 
d7a52dd
 
835f767
 
 
d7a52dd
 
a35428b
d7a52dd
a35428b
 
d7a52dd
 
 
a35428b
 
 
d7a52dd
 
a35428b
 
d7a52dd
 
a35428b
 
 
d7a52dd
 
 
 
 
 
 
0e9529c
d7a52dd
0e9529c
 
d7a52dd
 
 
0e9529c
 
 
d7a52dd
 
 
0e9529c
 
 
d7a52dd
0e9529c
 
 
d7a52dd
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
"""FastAPI endpoint
To run locally use 'uvicorn app:app --host localhost --port 7860'
or
`python -m uvicorn app:app --reload --host localhost --port 7860`
"""
import ast
import mathactive.microlessons.num_one as num_one_quiz
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from mathtext.sentiment import sentiment
from mathtext.text2int import text2int
from pydantic import BaseModel

from mathtext_fastapi.logging import prepare_message_data_for_logging
from mathtext_fastapi.conversation_manager import manage_conversation_response
from mathtext_fastapi.v2_conversation_manager import manage_conversation_response
from mathtext_fastapi.nlu import evaluate_message_with_nlu
from mathtext_fastapi.nlu import run_intent_classification

app = FastAPI()

app.mount("/static", StaticFiles(directory="static"), name="static")

templates = Jinja2Templates(directory="templates")


class Text(BaseModel):
    content: str = ""


@app.get("/")
def home(request: Request):
    return templates.TemplateResponse("home.html", {"request": request})


@app.post("/hello")
def hello(content: Text = None):
    content = {"message": f"Hello {content.content}!"}
    return JSONResponse(content=content)


@app.post("/sentiment-analysis")
def sentiment_analysis_ep(content: Text = None):
    ml_response = sentiment(content.content)
    content = {"message": ml_response}
    return JSONResponse(content=content)


@app.post("/text2int")
def text2int_ep(content: Text = None):
    ml_response = text2int(content.content)
    content = {"message": ml_response}
    return JSONResponse(content=content)


@app.post("/v1/manager")
async def programmatic_message_manager(request: Request):
    """
    Calls conversation management function to determine the next state

    Input
    request.body: dict - message data for the most recent user response
    {
        "author_id": "+47897891",
        "contact_uuid": "j43hk26-2hjl-43jk-hnk2-k4ljl46j0ds09",
        "author_type": "OWNER",
        "message_body": "a test message",
        "message_direction": "inbound",
        "message_id": "ABJAK64jlk3-agjkl2QHFAFH",
        "message_inserted_at": "2022-07-05T04:00:34.03352Z",
        "message_updated_at": "2023-02-14T03:54:19.342950Z",
    }

    Output
    context: dict - the information for the current state
    {
        "user": "47897891",
        "state": "welcome-message-state",
        "bot_message": "Welcome to Rori!",
        "user_message": "",
        "type": "ask"
    }
    """
    data_dict = await request.json()
    context = manage_conversation_response(data_dict)
    return JSONResponse(context)


@app.post("/v2/manager")
async def programmatic_message_manager(request: Request):
    """
    Calls conversation management function to determine the next state

    Input
    request.body: dict - message data for the most recent user response
    {
        "author_id": "+47897891",
        "contact_uuid": "j43hk26-2hjl-43jk-hnk2-k4ljl46j0ds09",
        "author_type": "OWNER",
        "message_body": "a test message",
        "message_direction": "inbound",
        "message_id": "ABJAK64jlk3-agjkl2QHFAFH",
        "message_inserted_at": "2022-07-05T04:00:34.03352Z",
        "message_updated_at": "2023-02-14T03:54:19.342950Z",
    }

    Output
    context: dict - the information for the current state
    {
        "user": "47897891",
        "state": "welcome-message-state",
        "bot_message": "Welcome to Rori!",
        "user_message": "",
        "type": "ask"
    }
    """
    data_dict = await request.json()
    context = manage_conversation_response(data_dict)
    return JSONResponse(context)


@app.post("/intent-classification")
def intent_classification_ep(content: Text = None):
    ml_response = run_intent_classification(content.content)
    content = {"message": ml_response}
    return JSONResponse(content=content)


@app.post("/nlu")
async def evaluate_user_message_with_nlu_api(request: Request):
    """ Calls nlu evaluation and returns the nlu_response

    Input
    - request.body: json - message data for the most recent user response

    Output
    - int_data_dict or sent_data_dict: dict - the type of NLU run and result
      {'type':'integer', 'data': '8', 'confidence': 0}
      {'type':'sentiment', 'data': 'negative', 'confidence': 0.99}
    """
    data_dict = await request.json()
    message_data = data_dict.get('message_data', '')
    nlu_response = evaluate_message_with_nlu(message_data)
    return JSONResponse(content=nlu_response)


@app.post("/num_one")
async def num_one(request: Request):
    """
    Input: 
    {
        "user_id": 1,
        "message_text": 5,
    }
    Output:
    {
        'messages': 
            ["Let's", 'practice', 'counting', '', '', '46...', '47...', '48...', '49', '', '', 'After', '49,', 'what', 'is', 'the', 'next', 'number', 'you', 'will', 'count?\n46,', '47,', '48,', '49'], 
        'input_prompt': '50', 
        'state': 'question'
    }
    """
    data_dict = await request.json()
    message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
    user_id = message_data['user_id']
    message_text = message_data['message_text']
    return num_one_quiz.process_user_message(user_id, message_text)
    

@app.post("/start")
async def ask_math_question(request: Request):
    """Generate a question data
    
    Input
    {
        'difficulty': 0.1,
        'do_increase': True | False
    }

    Output
    {
        'text': 'What is 1+2?',
        'difficulty': 0.2,
        'question_numbers': [3, 1, 4]
    }
    """
    data_dict = await request.json()
    message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
    difficulty = message_data['difficulty']
    do_increase = message_data['do_increase']

    return JSONResponse(generators.start_interactive_math(difficulty, do_increase))


@app.post("/hint")
async def get_hint(request: Request):
    """Generate a hint data
    
    Input
    {
        'start': 5,
        'step': 1,
        'difficulty': 0.1
    }

    Output
    {
        'text': 'What number is greater than 4 and less than 6?',
        'difficulty': 0.1,
        'question_numbers': [5, 1, 6]
    }
    """
    data_dict = await request.json()
    message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
    start = message_data['start']
    step = message_data['step']
    difficulty = message_data['difficulty']

    return JSONResponse(hints.generate_hint(start, step, difficulty))


@app.post("/question")
async def ask_math_question(request: Request):
    """Generate a question data
    
    Input
    {
        'start': 5,
        'step': 1,
        'question_num': 1  # optional
    }

    Output
    {
        'question': 'What is 1+2?',
        'start': 5,
        'step': 1,
        'answer': 6
    }
    """
    data_dict = await request.json()
    message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
    start = message_data['start']
    step = message_data['step']
    arg_tuple = (start, step)
    try:
        question_num = message_data['question_num']
        arg_tuple += (question_num,)
    except KeyError:
        pass

    return JSONResponse(questions.generate_question_data(*arg_tuple))


@app.post("/difficulty")
async def get_hint(request: Request):
    """Generate a number matching difficulty
    
    Input
    {
        'difficulty': 0.01,
        'do_increase': True
    }

    Output - value from 0.01 to 0.99 inclusively:
    0.09
    """
    data_dict = await request.json()
    message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
    difficulty = message_data['difficulty']
    do_increase = message_data['do_increase']

    return JSONResponse(utils.get_next_difficulty(difficulty, do_increase))


@app.post("/start_step")
async def get_hint(request: Request):
    """Generate a start and step values
    
    Input
    {
        'difficulty': 0.01,
        'path_to_csv_file': 'scripts/quiz/data.csv'  # optional
    }

    Output - tuple (start, step):
    (5, 1)
    """
    data_dict = await request.json()
    message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
    difficulty = message_data['difficulty']
    arg_tuple = (difficulty,)
    try:
        path_to_csv_file = message_data['path_to_csv_file']
        arg_tuple += (path_to_csv_file,)
    except KeyError:
        pass

    return JSONResponse(utils.get_next_difficulty(*arg_tuple))


@app.post("/sequence")
async def generate_question(request: Request):
    """Generate a sequence from start, step and optional separator parameter
    
    Input
    {
        'start': 5,
        'step': 1,
        'sep': ', '  # optional
    }

    Output
    5, 6, 7
    """
    data_dict = await request.json()
    message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
    start = message_data['start']
    step = message_data['step']
    arg_tuple = (start, step)
    try:
        sep = message_data['sep']
        arg_tuple += (sep,)
    except KeyError:
        pass

    return JSONResponse(utils.convert_sequence_to_string(*arg_tuple))