Spaces:
Runtime error
Runtime error
File size: 9,349 Bytes
7ff1fe0 4120946 59f00d1 7ff1fe0 6fa6b83 59f00d1 7ff1fe0 6b07ee4 b31816e d7a52dd 626c6ea d7a52dd fc4d327 7ff1fe0 b7f929e 6b07ee4 626c6ea 007ec3d 25fedb7 8acf519 25fedb7 8acf519 25fedb7 d7c0eb6 25fedb7 8acf519 25fedb7 fbc5903 25fedb7 007ec3d fbc5903 007ec3d 1054a05 626c6ea 007ec3d 25fedb7 8acf519 25fedb7 8acf519 25fedb7 d7c0eb6 25fedb7 8acf519 25fedb7 fbc5903 25fedb7 007ec3d fbc5903 007ec3d 1054a05 fc4d327 b7f929e 8acf519 fbc5903 b7f929e 8acf519 fbc5903 b7f929e 8acf519 71befd1 b7f929e 28a310a 48c823d 7b3a151 59f00d1 d6e6567 bf59cf6 6fa6b83 d7a52dd 6fa6b83 d7a52dd 6fa6b83 d7a52dd 6fa6b83 d7a52dd 6fa6b83 d7a52dd 6fa6b83 d7a52dd 6fa6b83 d7a52dd 6fa6b83 d7a52dd 6fa6b83 d7a52dd 6fa6b83 d7a52dd 6fa6b83 d7a52dd d55a841 d7a52dd d55a841 d7a52dd d55a841 d7a52dd d55a841 d7a52dd 835f767 d7a52dd 835f767 19299e4 d7a52dd 835f767 d7a52dd 835f767 d7a52dd 835f767 d7a52dd a35428b d7a52dd a35428b d7a52dd a35428b d7a52dd a35428b d7a52dd a35428b d7a52dd 0e9529c d7a52dd 0e9529c d7a52dd 0e9529c d7a52dd 0e9529c d7a52dd 0e9529c d7a52dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
"""FastAPI endpoint
To run locally use 'uvicorn app:app --host localhost --port 7860'
or
`python -m uvicorn app:app --reload --host localhost --port 7860`
"""
import ast
import mathactive.microlessons.num_one as num_one_quiz
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from mathtext.sentiment import sentiment
from mathtext.text2int import text2int
from pydantic import BaseModel
from mathtext_fastapi.logging import prepare_message_data_for_logging
from mathtext_fastapi.conversation_manager import manage_conversation_response
from mathtext_fastapi.v2_conversation_manager import manage_conversation_response
from mathtext_fastapi.nlu import evaluate_message_with_nlu
from mathtext_fastapi.nlu import run_intent_classification
app = FastAPI()
app.mount("/static", StaticFiles(directory="static"), name="static")
templates = Jinja2Templates(directory="templates")
class Text(BaseModel):
content: str = ""
@app.get("/")
def home(request: Request):
return templates.TemplateResponse("home.html", {"request": request})
@app.post("/hello")
def hello(content: Text = None):
content = {"message": f"Hello {content.content}!"}
return JSONResponse(content=content)
@app.post("/sentiment-analysis")
def sentiment_analysis_ep(content: Text = None):
ml_response = sentiment(content.content)
content = {"message": ml_response}
return JSONResponse(content=content)
@app.post("/text2int")
def text2int_ep(content: Text = None):
ml_response = text2int(content.content)
content = {"message": ml_response}
return JSONResponse(content=content)
@app.post("/v1/manager")
async def programmatic_message_manager(request: Request):
"""
Calls conversation management function to determine the next state
Input
request.body: dict - message data for the most recent user response
{
"author_id": "+47897891",
"contact_uuid": "j43hk26-2hjl-43jk-hnk2-k4ljl46j0ds09",
"author_type": "OWNER",
"message_body": "a test message",
"message_direction": "inbound",
"message_id": "ABJAK64jlk3-agjkl2QHFAFH",
"message_inserted_at": "2022-07-05T04:00:34.03352Z",
"message_updated_at": "2023-02-14T03:54:19.342950Z",
}
Output
context: dict - the information for the current state
{
"user": "47897891",
"state": "welcome-message-state",
"bot_message": "Welcome to Rori!",
"user_message": "",
"type": "ask"
}
"""
data_dict = await request.json()
context = manage_conversation_response(data_dict)
return JSONResponse(context)
@app.post("/v2/manager")
async def programmatic_message_manager(request: Request):
"""
Calls conversation management function to determine the next state
Input
request.body: dict - message data for the most recent user response
{
"author_id": "+47897891",
"contact_uuid": "j43hk26-2hjl-43jk-hnk2-k4ljl46j0ds09",
"author_type": "OWNER",
"message_body": "a test message",
"message_direction": "inbound",
"message_id": "ABJAK64jlk3-agjkl2QHFAFH",
"message_inserted_at": "2022-07-05T04:00:34.03352Z",
"message_updated_at": "2023-02-14T03:54:19.342950Z",
}
Output
context: dict - the information for the current state
{
"user": "47897891",
"state": "welcome-message-state",
"bot_message": "Welcome to Rori!",
"user_message": "",
"type": "ask"
}
"""
data_dict = await request.json()
context = manage_conversation_response(data_dict)
return JSONResponse(context)
@app.post("/intent-classification")
def intent_classification_ep(content: Text = None):
ml_response = run_intent_classification(content.content)
content = {"message": ml_response}
return JSONResponse(content=content)
@app.post("/nlu")
async def evaluate_user_message_with_nlu_api(request: Request):
""" Calls nlu evaluation and returns the nlu_response
Input
- request.body: json - message data for the most recent user response
Output
- int_data_dict or sent_data_dict: dict - the type of NLU run and result
{'type':'integer', 'data': '8', 'confidence': 0}
{'type':'sentiment', 'data': 'negative', 'confidence': 0.99}
"""
data_dict = await request.json()
message_data = data_dict.get('message_data', '')
nlu_response = evaluate_message_with_nlu(message_data)
return JSONResponse(content=nlu_response)
@app.post("/num_one")
async def num_one(request: Request):
"""
Input:
{
"user_id": 1,
"message_text": 5,
}
Output:
{
'messages':
["Let's", 'practice', 'counting', '', '', '46...', '47...', '48...', '49', '', '', 'After', '49,', 'what', 'is', 'the', 'next', 'number', 'you', 'will', 'count?\n46,', '47,', '48,', '49'],
'input_prompt': '50',
'state': 'question'
}
"""
data_dict = await request.json()
message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
user_id = message_data['user_id']
message_text = message_data['message_text']
return num_one_quiz.process_user_message(user_id, message_text)
@app.post("/start")
async def ask_math_question(request: Request):
"""Generate a question data
Input
{
'difficulty': 0.1,
'do_increase': True | False
}
Output
{
'text': 'What is 1+2?',
'difficulty': 0.2,
'question_numbers': [3, 1, 4]
}
"""
data_dict = await request.json()
message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
difficulty = message_data['difficulty']
do_increase = message_data['do_increase']
return JSONResponse(generators.start_interactive_math(difficulty, do_increase))
@app.post("/hint")
async def get_hint(request: Request):
"""Generate a hint data
Input
{
'start': 5,
'step': 1,
'difficulty': 0.1
}
Output
{
'text': 'What number is greater than 4 and less than 6?',
'difficulty': 0.1,
'question_numbers': [5, 1, 6]
}
"""
data_dict = await request.json()
message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
start = message_data['start']
step = message_data['step']
difficulty = message_data['difficulty']
return JSONResponse(hints.generate_hint(start, step, difficulty))
@app.post("/question")
async def ask_math_question(request: Request):
"""Generate a question data
Input
{
'start': 5,
'step': 1,
'question_num': 1 # optional
}
Output
{
'question': 'What is 1+2?',
'start': 5,
'step': 1,
'answer': 6
}
"""
data_dict = await request.json()
message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
start = message_data['start']
step = message_data['step']
arg_tuple = (start, step)
try:
question_num = message_data['question_num']
arg_tuple += (question_num,)
except KeyError:
pass
return JSONResponse(questions.generate_question_data(*arg_tuple))
@app.post("/difficulty")
async def get_hint(request: Request):
"""Generate a number matching difficulty
Input
{
'difficulty': 0.01,
'do_increase': True
}
Output - value from 0.01 to 0.99 inclusively:
0.09
"""
data_dict = await request.json()
message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
difficulty = message_data['difficulty']
do_increase = message_data['do_increase']
return JSONResponse(utils.get_next_difficulty(difficulty, do_increase))
@app.post("/start_step")
async def get_hint(request: Request):
"""Generate a start and step values
Input
{
'difficulty': 0.01,
'path_to_csv_file': 'scripts/quiz/data.csv' # optional
}
Output - tuple (start, step):
(5, 1)
"""
data_dict = await request.json()
message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
difficulty = message_data['difficulty']
arg_tuple = (difficulty,)
try:
path_to_csv_file = message_data['path_to_csv_file']
arg_tuple += (path_to_csv_file,)
except KeyError:
pass
return JSONResponse(utils.get_next_difficulty(*arg_tuple))
@app.post("/sequence")
async def generate_question(request: Request):
"""Generate a sequence from start, step and optional separator parameter
Input
{
'start': 5,
'step': 1,
'sep': ', ' # optional
}
Output
5, 6, 7
"""
data_dict = await request.json()
message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
start = message_data['start']
step = message_data['step']
arg_tuple = (start, step)
try:
sep = message_data['sep']
arg_tuple += (sep,)
except KeyError:
pass
return JSONResponse(utils.convert_sequence_to_string(*arg_tuple))
|