File size: 16,278 Bytes
8d24b90
8db2907
 
9df835b
 
8d24b90
4513698
9df835b
 
 
 
 
8d24b90
4513698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e1bd59
4513698
 
 
 
 
 
9df835b
 
4513698
 
8d24b90
 
 
 
9df835b
4f1f8e0
 
 
 
4513698
8d24b90
903962c
4513698
 
9df835b
 
 
 
 
 
 
8d24b90
 
 
1324481
8d24b90
 
 
 
9df835b
8d24b90
9df835b
 
 
 
 
 
 
 
4513698
9df835b
8d24b90
 
 
1324481
 
8d24b90
 
 
 
4513698
8d24b90
 
 
 
9df835b
 
 
 
1324481
9df835b
1324481
 
9df835b
 
 
 
 
1324481
9df835b
 
 
 
 
1324481
9df835b
 
 
 
 
 
 
 
 
4513698
903962c
8d24b90
9df835b
4f1f8e0
 
 
 
 
 
 
 
 
 
 
 
 
4513698
 
 
 
 
 
 
9df835b
8db2907
 
4f1f8e0
8db2907
 
 
 
 
9df835b
 
4513698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce67827
4513698
 
9794c19
 
 
4e1bd59
9794c19
 
 
4e1bd59
9794c19
 
4e1bd59
 
 
9794c19
 
 
 
4e1bd59
 
 
9794c19
 
 
 
4e1bd59
 
 
 
 
 
 
 
 
9794c19
 
 
8d24b90
9df835b
4513698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8db2907
4513698
 
 
 
 
 
 
 
 
 
9df835b
 
 
4513698
 
285f240
 
9df835b
 
 
4513698
9df835b
4513698
 
 
8db2907
4513698
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import os
import torch
import librosa
import numpy as np
import gradio as gr
import pyopenjtalk
from util import preprocess_input, postprocess_phn, get_tokenizer, load_pitch_dict, get_pinyin

from espnet_model_zoo.downloader import ModelDownloader
from espnet2.bin.svs_inference import SingingGenerate


singer_embeddings = {
    "Model①(Chinese)-zh": {
        "singer1 (male)": 1,
        "singer2 (female)": 12,
        "singer3 (male)": 23,
        "singer4 (female)": 29,
        "singer5 (male)": 18,
        "singer6 (female)": 8,
        "singer7 (male)": 25,
        "singer8 (female)": 5,
        "singer9 (male)": 10,
        "singer10 (female)": 15,
    },
    "Model②(Multilingual)-zh": {
        "singer1 (male)": "resource/singer/singer_embedding_ace-1.npy",
        "singer2 (female)": "resource/singer/singer_embedding_ace-2.npy",
        "singer3 (male)": "resource/singer/singer_embedding_ace-3.npy",
        "singer4 (female)": "resource/singer/singer_embedding_ace-8.npy",
        "singer5 (male)": "resource/singer/singer_embedding_ace-7.npy",
        "singer6 (female)": "resource/singer/singer_embedding_itako.npy",
        "singer7 (male)": "resource/singer/singer_embedding_ofuton.npy",
        "singer8 (female)": "resource/singer/singer_embedding_kising_orange.npy",
        "singer9 (male)": "resource/singer/singer_embedding_m4singer_Tenor-1.npy",
        "singer10 (female)": "resource/singer/singer_embedding_m4singer_Alto-4.npy",
    },
    "Model②(Multilingual)-jp": {
        "singer1 (male)": "resource/singer/singer_embedding_ace-1.npy",
        "singer2 (female)": "resource/singer/singer_embedding_ace-2.npy",
        "singer3 (male)": "resource/singer/singer_embedding_ace-3.npy",
        "singer4 (female)": "resource/singer/singer_embedding_ace-8.npy",
        "singer5 (male)": "resource/singer/singer_embedding_ace-7.npy",
        "singer6 (female)": "resource/singer/singer_embedding_itako.npy",
        "singer7 (male)": "resource/singer/singer_embedding_ofuton.npy",
        "singer8 (female)": "resource/singer/singer_embedding_kising_orange.npy",
        "singer9 (male)": "resource/singer/singer_embedding_m4singer_Tenor-1.npy",
        "singer10 (female)": "resource/singer/singer_embedding_m4singer_Alto-4.npy",
    },
}

model_dict = {
    "Model①(Chinese)-zh": "espnet/aceopencpop_svs_visinger2_40singer_pretrain",
    "Model②(Multilingual)-zh": "espnet/mixdata_svs_visinger2_spkembed_lang_pretrained",
    "Model②(Multilingual)-jp": "espnet/mixdata_svs_visinger2_spkembed_lang_pretrained",
}

total_singers = list(singer_embeddings["Model②(Multilingual)-zh"].keys())

langs = {
    "zh": 2,
    "jp": 1,
}

predictor = torch.hub.load("South-Twilight/SingMOS:v0.2.0", "singing_ssl_mos", trust_repo=True)
exist_model = "Null"
svs = None

def gen_song(model_name, spk, texts, durs, pitchs):
    fs = 44100
    tempo = 120
    lang = model_name.split("-")[-1]
    PRETRAIN_MODEL = model_dict[model_name]
    if texts is None:
        return (fs, np.array([0.0])), "Error: No Text provided!"
    if durs is None:
        return (fs, np.array([0.0])), "Error: No Dur provided!"
    if pitchs is None:
        return (fs, np.array([0.0])), "Error: No Pitch provided!"

    # preprocess
    if lang == "zh":
        texts = preprocess_input(texts, "")
        text_list = get_pinyin(texts)
    elif lang == "jp":
        texts = preprocess_input(texts, " ")
        text_list = texts.strip().split()
    durs = preprocess_input(durs, " ")
    dur_list = durs.strip().split()
    pitchs = preprocess_input(pitchs, " ")
    pitch_list = pitchs.strip().split()

    if len(text_list) != len(dur_list):
        return (fs, np.array([0.0])), f"Error: len in text({len(text_list)}) mismatch with duration({len(dur_list)})!"
    if len(text_list) != len(pitch_list):
        return (fs, np.array([0.0])), f"Error: len in text({len(text_list)}) mismatch with pitch({len(pitch_list)})!"

    ## text to phoneme
    tokenizer = get_tokenizer(model_name, lang)
    sybs = []
    for text in text_list:
        if text == "AP" or text == "SP":
            rev = [text]
        elif text == "-" or text == "——":
            rev = [text]
        else:
            rev = tokenizer(text)
        if rev == False:
            return (fs, np.array([0.0])), f"Error: text `{text}` is invalid!"
        rev = postprocess_phn(rev, model_name, lang)
        phns = "_".join(rev)
        sybs.append(phns)

    pitch_dict = load_pitch_dict()

    labels = []
    notes = []
    st = 0
    pre_phn = ""
    for phns, dur, pitch in zip(sybs, dur_list, pitch_list):
        if phns == "-" or phns == "——":
            phns = pre_phn
        if pitch not in pitch_dict:
            return (fs, np.array([0.0])), f"Error: pitch `{pitch}` is invalid!"
        pitch = pitch_dict[pitch]
        phn_list = phns.split("_")
        lyric = "".join(phn_list)
        dur = float(dur)
        note = [st, st + dur, lyric, pitch, phns]
        st += dur
        notes.append(note)
        for phn in phn_list:
            labels.append(phn)
        pre_phn = labels[-1]

    phns_str = " ".join(labels)
    batch = {
        "score": (
            int(tempo),
            notes,
        ),
        "text": phns_str,
    }
    print(batch)
    # return (fs, np.array([0.0])), "success!"

    # Infer
    global exist_model
    global svs
    if exist_model == "Null" or exist_model != model_name:
        device = "cpu"
        # device = "cuda" if torch.cuda.is_available() else "cpu"
        d = ModelDownloader()
        pretrain_downloaded = d.download_and_unpack(PRETRAIN_MODEL)
        svs = SingingGenerate(
            train_config = pretrain_downloaded["train_config"],
            model_file = pretrain_downloaded["model_file"],
            device = device
        )
        exist_model = model_name
    if model_name == "Model①(Chinese)-zh":
        sid = np.array([singer_embeddings[model_name][spk]])
        output_dict = svs(batch, sids=sid)
    else:
        lid = np.array([langs[lang]])
        spk_embed = np.load(singer_embeddings[model_name][spk])
        output_dict = svs(batch, lids=lid, spembs=spk_embed)
    wav_info = output_dict["wav"].cpu().numpy()

    # mos prediction with sr=16k
    global predictor
    wav_mos = librosa.resample(wav_info, orig_sr=fs, target_sr=16000)
    wav_mos = torch.from_numpy(wav_mos).unsqueeze(0)
    len_mos = torch.tensor([wav_mos.shape[1]])
    score = predictor(wav_mos, len_mos)
    return (fs, wav_info), "success!", round(score.item(), 2)


# SP: silence, AP: aspirate.
examples = [
    ["Model①(Chinese)-zh", "singer1 (male)", "雨 淋 湿 了 SP 天 空 AP\n毁 的 SP 很 讲 究 AP", "0.23 0.16 0.36 0.16 0.07 0.28 0.5 0.21\n0.3 0.12 0.12 0.25 0.5 0.48 0.34", "60 62 62 62 0 62 58 0\n58 58 0 58 58 63 0"],
    ["Model①(Chinese)-zh", "singer3 (male)", "雨 淋 湿 了 SP 天 空 AP\n毁 的 SP 很 讲 究 AP", "0.23 0.16 0.36 0.16 0.07 0.28 0.5 0.21\n0.3 0.12 0.12 0.25 0.5 0.48 0.34", "C4 D4 D4 D4 rest D4 A#3 rest\nA#3 A#3 rest A#3 A#3 D#4 rest"], # midi note
    ["Model①(Chinese)-zh", "singer3 (male)", "雨 淋 湿 了 SP 天 空 AP\n毁 的 SP 很 讲 究 AP", "0.23 0.16 0.36 0.16 0.07 0.28 0.5 0.21\n0.3 0.12 0.12 0.25 0.5 0.48 0.34", "C#4 D#4 D#4 D#4 rest D#4 B3 rest\nB3 B3 rest B3 B3 E4 rest"], # up 1 key
    ["Model①(Chinese)-zh", "singer3 (male)", "雨 淋 湿 了 SP 大 地 AP\n毁 的 SP 很 讲 究 AP", "0.23 0.16 0.36 0.16 0.07 0.28 0.5 0.21\n0.3 0.12 0.12 0.25 0.5 0.48 0.34", "C4 D4 D4 D4 rest D4 A#3 rest\nA#3 A#3 rest A#3 A#3 D#4 rest"], # lyrics
    ["Model②(Multilingual)-zh", "singer3 (male)", "你 说 你 不 SP 懂\n 为 何 在 这 时 牵 手 AP", "0.11 0.33 0.29 0.13 0.15 0.48\n0.24 0.18 0.34 0.15 0.27 0.28 0.63 0.44", "63 63 63 63 0 63\n62 62 62 63 65 63 62 0"],
    ["Model②(Multilingual)-zh", "singer3 (male)", "你 说 你 不 SP 懂\n 为 何 在 这 时 牵 手 AP", "0.23 0.66 0.58 0.27 0.3 0.97\n0.48 0.36 0.69 0.3 0.53 0.56 1.27 0.89", "63 63 63 63 0 63\n62 62 62 63 65 63 62 0"], # double duration
    ["Model①(Chinese)-zh", "singer3 (male)", "雨 淋 湿 了 SP 天 空 AP\n毁 的 SP 很 讲 究 AP\n你 说 你 不 SP 懂\n 为 何 在 这 时 牵 手 AP", "0.23 0.16 0.36 0.16 0.07 0.28 0.5 0.21\n0.3 0.12 0.12 0.25 0.5 0.48 0.34\n0.11 0.33 0.29 0.13 0.15 0.48\n0.24 0.18 0.34 0.15 0.27 0.28 0.63 0.44", "60 62 62 62 0 62 58 0\n58 58 0 58 58 63 0\n63 63 63 63 0 63\n62 62 62 63 65 63 62 0"], # long
    ["Model①(Chinese)-zh", "singer3 (male)", "修 炼 爱 情 的 心 酸 SP AP", "0.42 0.21 0.19 0.28 0.22 0.33 1.53 0.1 0.29", "68 70 68 66 63 68 68 0 0"],
    ["Model①(Chinese)-zh", "singer3 (male)", "学 会 放 好 以 前 的 渴 望 SP AP", "0.3 0.22 0.29 0.27 0.25 0.44 0.54 0.29 1.03 0.08 0.39", "68 70 68 66 61 68 68 65 66 0 0"],
    ["Model①(Chinese)-zh", "singer3 (male)", "SP 我 不 - 是 一 定 要 你 回 - 来 SP", "0.37 0.45 0.47 0.17 0.52 0.28 0.46 0.31 0.44 0.45 0.2 2.54 0.19", "0 51 60 61 59 59 57 57 59 60 61 59 0"], # slur
    ["Model①(Chinese)-zh", "singer4 (female)", "AP 我 多 想 再 见 你\n哪 怕 匆 - 匆 一 AP 眼 就 别 离 AP", "0.13 0.24 0.68 0.78 0.86 0.4 0.94 0.54 0.3 0.56 0.16 0.86 0.26 0.22 0.28 0.78 0.68 1.5 0.32", "0 57 66 63 63 63 63 60 61 61 63 66 66 0 61 61 59 58 0"],
    ["Model②(Multilingual)-jp", "singer8 (female)", "い じ ん さ ん に つ れ ら れ て", "0.6 0.3 0.3 0.3 0.3 0.6 0.6 0.3 0.3 0.6 0.23", "60 60 60 56 56 56 55 55 55 53 56"],
    ["Model②(Multilingual)-jp", "singer8 (female)", "い じ ん さ ん に つ れ ら れ て", "0.6 0.3 0.3 0.3 0.3 0.6 0.6 0.3 0.3 0.6 0.23", "62 62 62 58 58 58 57 57 57 55 58"], # pitch
    ["Model②(Multilingual)-jp", "singer8 (female)", "い じ ん さ ん に つ れ ら れ て", "1.2 0.6 0.6 0.6 0.6 1.2 1.2 0.6 0.6 1.2 0.45", "60 60 60 56 56 56 55 55 55 53 56"], # double dur
    ["Model②(Multilingual)-jp", "singer8 (female)", "い じ ん さ ん に つ れ ら れ て", "0.3 0.15 0.15 0.15 0.15 0.3 0.3 0.15 0.15 0.3 0.11", "60 60 60 56 56 56 55 55 55 53 56"], # half dur
    ["Model②(Multilingual)-jp", "singer8 (female)", "きっ と と べ ば そ ら ま で と ど く AP", "0.39 2.76 0.2 0.2 0.39 0.39 0.2 0.2 0.39 0.2 0.2 0.59 1.08", "64 71 68 69 71 71 69 68 66 68 69 68 0"],
    ["Model②(Multilingual)-jp", "singer8 (female)", "じゃ の め で お む か え う れ し い な", "0.43 0.14 0.43 0.14 0.43 0.14 0.43 0.14 0.43 0.14 0.43 0.14 0.65", "60 60 60 62 64 67 69 69 64 64 64 62 60"],
    ["Model②(Multilingual)-jp", "singer10 (female)", "お と め わ ら い か ふぁ い や ら い か ん な い す ぶ ろ うぃ ん ぶ ろ うぃ ん い ん ざ うぃ ん", "0.15 0.15 0.15 0.15 0.3 0.15 0.3 0.15 0.15 0.3 0.07 0.07 0.15 0.15 0.15 0.15 0.15 0.15 0.45 0.07 0.07 0.07 0.38 0.07 0.07 0.15 0.15 0.3 0.15 0.15", "67 67 67 67 67 67 69 67 67 69 67 67 64 64 64 64 64 64 62 64 64 62 62 64 64 62 62 59 59 59"],
]

with gr.Blocks() as demo:
    gr.Markdown(
        """
<h1 align="center"> Demo of Singing Voice Synthesis in Muskits-ESPnet </h1>

<div style="font-size: 20px;">
This is the demo page of our toolkit <a href="https://arxiv.org/abs/2409.07226"><b>Muskits-ESPnet: A Comprehensive Toolkit for Singing Voice Synthesis in New Paradigm</b></a>.

Singing Voice Synthesis (SVS) takes a music score as input and generates singing vocal with the voice of a specific singer.

Music score usually includes lyrics, as well as duration and pitch of each word in lyrics.

<h2>How to use:</h2>
    <ol>
        <li><b>Choose Model-Language</b>:
            <ul>
                <li>Choose "zh" for Chinese lyrics input or "jp" for Japanese lyrics input.</li>
                <li>For example, "Model②(Mulitlingual)-zh" means model "Model②(Multilingual)" with lyrics input in Chinese.</li>
            </ul>
        </li>
        <li><b>[Optional] Choose Singer</b>: Choose a singer from the drop-down menu.</li>
        <li><b>Input lyrics</b>:
            <ul>
                <li>Input Chinese characters for "zh" and hiragana for "jp".</li>
                <li>You may include special symbols: 'AP' for breath, 'SP' for silence, and '-' for slur (Chinese lyrics only).</li>
                <li>Separate each lyric by either a space (' ') or a newline ('\\n') (no quotation marks needed).</li>
            </ul>
        </li>
        <li><b>Input durations</b>:
            <ul>
                <li>Input durations as float numbers.</li>
                <li>The durations sequence should <b>match the lyric sequence in length</b>, with each duration aligned to a lyric.</li>
                <li>Separate each duration by a space (' ') or a newline ('\\n') (no quotation marks needed).</li>
            </ul>
        </li>
        <li><b>Input pitches</b>:
            <ul>
                <li>Input MIDI note names or MIDI note numbers (e.g., MIDI note name "69" represents the MIDI note number "A4", and others follow accordingly).</li>
                <li>The pitch sequence should <b>match the lyric sequence in length</b>, with each pitch corresponding to a lyric.</li>
                <li>Separate each duration by a space (' ') or a newline ('\\n') (no quotation marks needed).</li>
            </ul>
        </li>
        <li><b>Hit "Generate" and listen</b>:
            <ul>
                <li>"Running Status" shows the status of singing generatation. If any error exists, it will show the error information.</li>
                <li>"Pseudo MOS" represents predicted mean opinion score for the generated song.</li>
            </ul>
        </li>
    </ol>
</div>

<h2>Notice:</h2>
    <ul>
        <li> Plenty of exmpales are provided. </li>
        <li> Extreme values may result in suboptimal generation quality! </li>
    </ul>
"""       
    )
    # Row-1
    with gr.Row():
        with gr.Column(variant="panel"):
            model_name = gr.Radio(
                label="Model-Language",
                choices=[
                    "Model①(Chinese)-zh",
                    "Model②(Multilingual)-zh",
                    "Model②(Multilingual)-jp",
                ],
            )

        with gr.Column(variant="panel"):
            singer = gr.Dropdown(
                label="Singer",
                choices=total_singers,
            )
        
        # def set_model(model_name_str: str):
        #     """
        #     gets value from `model_name`. either
        #     uses cached list of speakers for the given model name
        #     or loads the addon and checks what are the speakers.
        #     """
        #     speakers = list(singer_embeddings[model_name_str].keys())
        #     value = speakers[0]
        #     return gr.update(
        #         choices=speakers, value=value, visible=True, interactive=True
        #     )

        # model_name.change(set_model, inputs=model_name, outputs=singer)

    # Row-2
    with gr.Row():
        with gr.Column(variant="panel"):
            lyrics = gr.Textbox(label="Lyrics")
            duration = gr.Textbox(label="Duration")
            pitch = gr.Textbox(label="Pitch")
            generate = gr.Button("Generate")
        with gr.Column(variant="panel"):
            gened_song = gr.Audio(label="Generated Song", type="numpy")
            run_status = gr.Textbox(label="Running Status")
            pred_mos = gr.Textbox(label=" Pseudo MOS")

    gr.Examples(
        examples=examples,
        inputs=[model_name, singer, lyrics, duration, pitch],
        outputs=[singer],
        label="Examples",
        examples_per_page=20,
    )
    
    gr.Markdown("""
<div style='margin:20px auto;'>

<p>References: <a href="https://arxiv.org/abs/2409.07226">Muskits-ESPnet paper</a> |
<a href="https://github.com/espnet/espnet">espnet</a> |
<a href="https://huggingface.co/espnet/aceopencpop_svs_visinger2_40singer_pretrain">Model①(Chinese)</a> |
<a href="https://huggingface.co/espnet/mixdata_svs_visinger2_spkembed_lang_pretrained">Model②(Multilingual)</a> |
<a href="https://github.com/South-Twilight/SingMOS">SingMOS</a></p>

</div>
"""
    )

    generate.click(
        fn=gen_song,
        inputs=[model_name, singer, lyrics, duration, pitch],
        outputs=[gened_song, run_status, pred_mos],
    )
    
demo.launch()