Spaces:
Runtime error
Runtime error
File size: 2,835 Bytes
889a5cc e710876 889a5cc e710876 889a5cc 14b80ce 889a5cc 56bdf87 e710876 889a5cc 47af204 4872dd1 47af204 4872dd1 47af204 4872dd1 47af204 889a5cc 4872dd1 47af204 2cb87d0 889a5cc 47af204 15ad32c 889a5cc e8db4c4 14b80ce e8db4c4 889a5cc 47af204 14b80ce 47af204 4872dd1 48b5bc5 2cb87d0 48b5bc5 52e8cc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
from funasr import AutoModel
from funasr.utils.postprocess_utils import rich_transcription_postprocess
from modelscope import snapshot_download
import datetime
import math
import io
import os
import tempfile
import json
from typing import Optional
from pyannote.audio import Audio, Pipeline
from pyannote.core import Segment
import torch
import gradio as gr
from config import model_config
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model_dir = snapshot_download(model_config['model_dir'])
model = AutoModel(
model=model_dir,
trust_remote_code=False,
remote_code="./model.py",
vad_model="fsmn-vad",
punc_model="ct-punc",
vad_kwargs={"max_single_segment_time": 30000},
ncpu=torch.get_num_threads(),
batch_size=1,
hub="hf",
device=device,
)
def transcribe_audio(file_path, vad_model="fsmn-vad", punc_model="ct-punc", vad_kwargs='{"max_single_segment_time": 30000}',
batch_size=1, language="auto", use_itn=True, batch_size_s=60,
merge_vad=True, merge_length_s=15, batch_size_threshold_s=50,
hotword=" ", spk_model="cam++", ban_emo_unk=True):
try:
vad_kwargs = json.loads(vad_kwargs)
temp_file_path = file_path
res = model.generate(
input=temp_file_path,
cache={},
language=language,
use_itn=use_itn,
batch_size_s=batch_size_s,
merge_vad=merge_vad,
merge_length_s=merge_length_s,
batch_size_threshold_s=batch_size_threshold_s,
hotword=hotword,
spk_model=spk_model,
ban_emo_unk=ban_emo_unk
)
text = rich_transcription_postprocess(res[0]["text"])
return text
except Exception as e:
return str(e)
inputs = [
gr.Audio(type="filepath"),
gr.Textbox(value="fsmn-vad", label="VAD Model"),
gr.Textbox(value="ct-punc", label="PUNC Model"),
gr.Textbox(value='{"max_single_segment_time": 30000}', label="VAD Kwargs"),
gr.Slider(1, 10, value=1, step=1, label="Batch Size"),
gr.Textbox(value="auto", label="Language"),
gr.Checkbox(value=True, label="Use ITN"),
gr.Slider(30, 120, value=60, step=1, label="Batch Size (seconds)"),
gr.Checkbox(value=True, label="Merge VAD"),
gr.Slider(5, 60, value=15, step=1, label="Merge Length (seconds)"),
gr.Slider(10, 100, value=50, step=1, label="Batch Size Threshold (seconds)"),
gr.Textbox(value=" ", label="Hotword"),
gr.Textbox(value="cam++", label="Speaker Model"),
gr.Checkbox(value=True, label="Ban Emotional Unknown"),
]
outputs = gr.Textbox(label="Transcription")
gr.Interface(
fn=transcribe_audio,
inputs=inputs,
outputs=outputs,
title="ASR Transcription with FunASR"
).launch() |