File size: 19,643 Bytes
58857c9
d59e7dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58857c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d59e7dc
 
 
 
 
 
 
58857c9
d59e7dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58857c9
d59e7dc
58857c9
 
 
d59e7dc
58857c9
 
 
 
 
d59e7dc
58857c9
 
 
 
 
 
d59e7dc
58857c9
 
 
 
 
 
 
 
 
 
d59e7dc
58857c9
d59e7dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58857c9
d59e7dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58857c9
 
 
 
 
 
d59e7dc
58857c9
 
 
 
 
 
 
 
d59e7dc
58857c9
 
d59e7dc
58857c9
d59e7dc
58857c9
 
 
 
 
 
 
d59e7dc
58857c9
 
 
d59e7dc
58857c9
 
 
 
 
 
d59e7dc
58857c9
 
 
 
 
 
 
 
 
d59e7dc
58857c9
1d95373
 
 
 
58857c9
1d95373
 
 
 
 
 
58857c9
 
d59e7dc
58857c9
d59e7dc
58857c9
 
 
 
 
 
 
 
 
 
d59e7dc
58857c9
 
d59e7dc
 
58857c9
 
d59e7dc
58857c9
 
 
 
d59e7dc
58857c9
 
d59e7dc
58857c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d95373
7cf0123
 
58857c9
 
7cf0123
58857c9
7cf0123
 
 
 
b658c92
1d95373
58857c9
 
 
 
 
8fa9209
58857c9
 
8fa9209
58857c9
 
 
8fa9209
58857c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fa9209
58857c9
 
 
 
 
8fa9209
58857c9
 
 
 
 
8fa9209
58857c9
 
 
 
 
 
8fa9209
58857c9
 
 
 
23f0de4
58857c9
 
 
 
8fa9209
58857c9
 
 
 
 
 
 
8fa9209
58857c9
 
 
 
 
 
8fa9209
58857c9
 
 
 
 
 
8fa9209
58857c9
 
8fa9209
58857c9
8fa9209
58857c9
8b2c9e1
58857c9
 
8b2c9e1
58857c9
8b2c9e1
58857c9
 
 
 
 
8b2c9e1
58857c9
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
from typing import List, Dict, Union, Optional
from groq import Groq
import chromadb
import os
import datetime
import json
import xml.etree.ElementTree as ET
import nltk
from nltk.tokenize import sent_tokenize
import PyPDF2
from sentence_transformers import SentenceTransformer

class CustomEmbeddingFunction:
    def __init__(self):
        self.model = SentenceTransformer('all-MiniLM-L6-v2')

    def __call__(self, input: List[str]) -> List[List[float]]:
        embeddings = self.model.encode(input)
        return embeddings.tolist()

class EnhancedXMLProcessor:
    def __init__(self):
        self.processed_nodes = set()
        self.reference_map = {}
        self.node_info = {}

    def build_reference_map(self, root) -> None:
        """Build a map of all node references for faster lookup"""
        for element in root.findall('.//*'):
            node_id = element.get('NodeId')
            if node_id:
                self.node_info[node_id] = {
                    'tag': element.tag,
                    'browse_name': element.get('BrowseName', ''),
                    'display_name': self._get_display_name(element),
                    'description': self._get_description(element),
                    'data_type': element.get('DataType', ''),
                    'references': []
                }
                
                refs = element.find('References')
                if refs is not None:
                    for ref in refs.findall('Reference'):
                        ref_type = ref.get('ReferenceType')
                        is_forward = ref.get('IsForward', 'true') == 'true'
                        target = ref.text
                        
                        if ref_type in ['HasComponent', 'HasProperty', 'HasTypeDefinition']:
                            self.reference_map.setdefault(node_id, []).append({
                                'type': ref_type,
                                'target': target,
                                'is_forward': is_forward
                            })
                            self.node_info[node_id]['references'].append({
                                'type': ref_type,
                                'target': target,
                                'is_forward': is_forward
                            })

    def _get_display_name(self, element) -> str:
        """Extract display name from element"""
        display_name = element.find('DisplayName')
        if display_name is not None:
            return display_name.text
        return ''

    def _get_description(self, element) -> str:
        """Extract description from element"""
        desc = element.find('Description')
        if desc is not None:
            return desc.text
        return ''

    def generate_natural_language(self, node_id: str, depth: int = 0, visited: set = None) -> List[str]:
        """Generate natural language description for a node and its children"""
        if visited is None:
            visited = set()
            
        if node_id in visited:
            return []
            
        visited.add(node_id)
        descriptions = []
        
        node = self.node_info.get(node_id)
        if not node:
            return []

        base_desc = self._build_base_description(node, depth)
        if base_desc:
            descriptions.append(base_desc)

        if node_id in self.reference_map:
            child_descriptions = self._process_forward_references(node_id, depth + 1, visited)
            descriptions.extend(child_descriptions)

        return descriptions

    def _build_base_description(self, node: Dict, depth: int) -> str:
        """Build the base description for a node"""
        indentation = "  " * depth
        desc_parts = []

        if node['browse_name']:
            browse_name = node['browse_name'].split(':')[-1]
            desc_parts.append(f"a {browse_name}")

        if node['display_name']:
            desc_parts.append(f"(displayed as '{node['display_name']}')")

        if node['data_type']:
            desc_parts.append(f"of type {node['data_type']}")

        if node['description']:
            desc_parts.append(f"which {node['description']}")

        if desc_parts:
            return f"{indentation}Contains {' '.join(desc_parts)}"
        return ""

    def _process_forward_references(self, node_id: str, depth: int, visited: set) -> List[str]:
        """Process forward references to build hierarchical descriptions"""
        descriptions = []
        
        for ref in self.reference_map.get(node_id, []):
            if ref['is_forward'] and ref['type'] in ['HasComponent', 'HasProperty']:
                target_descriptions = self.generate_natural_language(ref['target'], depth, visited)
                descriptions.extend(target_descriptions)

        return descriptions

    def generate_complete_description(self, root) -> str:
        """Generate a complete natural language description of the XML structure"""
        self.build_reference_map(root)
        root_descriptions = []
        
        for node_id in self.node_info:
            is_root = True
            for ref_list in self.reference_map.values():
                for ref in ref_list:
                    if not ref['is_forward'] and ref['type'] == 'HasComponent' and ref['target'] == node_id:
                        is_root = False
                        break
                if not is_root:
                    break
                    
            if is_root:
                descriptions = self.generate_natural_language(node_id)
                root_descriptions.extend(descriptions)

        return "\n".join(root_descriptions)

class UnifiedDocumentProcessor:
    def __init__(self, groq_api_key, collection_name="unified_content"):
        """Initialize the processor with necessary clients"""
        self.groq_client = Groq(api_key=groq_api_key)

        # XML-specific settings
        self.max_elements_per_chunk = 50
        self.xml_processor = EnhancedXMLProcessor()

        # PDF-specific settings
        self.pdf_chunk_size = 500
        self.pdf_overlap = 50

        # Initialize NLTK
        self._initialize_nltk()

        # Initialize ChromaDB with a single collection for all document types
        self.chroma_client = chromadb.Client()
        existing_collections = self.chroma_client.list_collections()
        collection_exists = any(col.name == collection_name for col in existing_collections)

        if collection_exists:
            print(f"Using existing collection: {collection_name}")
            self.collection = self.chroma_client.get_collection(
                name=collection_name,
                embedding_function=CustomEmbeddingFunction()
            )
        else:
            print(f"Creating new collection: {collection_name}")
            self.collection = self.chroma_client.create_collection(
                name=collection_name,
                embedding_function=CustomEmbeddingFunction()
            )

    def _initialize_nltk(self):
        """Ensure NLTK's `punkt` tokenizer resource is available."""
        try:
            nltk.data.find('tokenizers/punkt')
        except LookupError:
            print("Downloading NLTK 'punkt' tokenizer...")
            nltk.download('punkt')

    def flatten_xml_to_text(self, element, depth=0) -> str:
        """Convert XML to natural language using the enhanced processor"""
        try:
            return self.xml_processor.generate_complete_description(element)
        except Exception as e:
            print(f"Error in enhanced XML processing: {str(e)}")
            return self._original_flatten_xml_to_text(element, depth)

    def _original_flatten_xml_to_text(self, element, depth=0) -> str:
        """Original fallback XML flattening implementation"""
        text_parts = []
        
        element_info = f"Element: {element.tag}"
        if element.attrib:
            element_info += f", Attributes: {json.dumps(element.attrib)}"
        if element.text and element.text.strip():
            element_info += f", Text: {element.text.strip()}"
        text_parts.append(element_info)
        
        for child in element:
            child_text = self._original_flatten_xml_to_text(child, depth + 1)
            text_parts.append(child_text)
            
        return "\n".join(text_parts)

    def extract_text_from_pdf(self, pdf_path: str) -> str:
        """Extract text from PDF file"""
        try:
            text = ""
            with open(pdf_path, 'rb') as file:
                pdf_reader = PyPDF2.PdfReader(file)
                for page in pdf_reader.pages:
                    text += page.extract_text() + " "
            return text.strip()
        except Exception as e:
            raise Exception(f"Error extracting text from PDF: {str(e)}")

    def chunk_text(self, text: str) -> List[str]:
        """Split text into chunks while preserving sentence boundaries"""
        sentences = sent_tokenize(text)
        chunks = []
        current_chunk = []
        current_size = 0

        for sentence in sentences:
            words = sentence.split()
            sentence_size = len(words)

            if current_size + sentence_size > self.pdf_chunk_size:
                if current_chunk:
                    chunks.append(' '.join(current_chunk))
                    overlap_words = current_chunk[-self.pdf_overlap:] if self.pdf_overlap > 0 else []
                    current_chunk = overlap_words + words
                    current_size = len(current_chunk)
                else:
                    current_chunk = words
                    current_size = sentence_size
            else:
                current_chunk.extend(words)
                current_size += sentence_size

        if current_chunk:
            chunks.append(' '.join(current_chunk))

        return chunks

    def chunk_xml_text(self, text: str, max_chunk_size: int = 2000) -> List[str]:
        """Split flattened XML text into manageable chunks"""
        lines = text.split('\n')
        chunks = []
        current_chunk = []
        current_size = 0

        for line in lines:
            line_size = len(line)
            if current_size + line_size > max_chunk_size and current_chunk:
                chunks.append('\n'.join(current_chunk))
                current_chunk = []
                current_size = 0
            current_chunk.append(line)
            current_size += line_size

        if current_chunk:
            chunks.append('\n'.join(current_chunk))

        return chunks

    def generate_natural_language(self, content: Union[List[Dict], str], content_type: str) -> str:
        """Generate natural language description with improved error handling and chunking"""
        try:
            if content_type == "xml":
                prompt = f"Convert this XML structure description to a natural language summary that preserves the hierarchical relationships: {content}"
            else:  # pdf
                prompt = f"Summarize this text while preserving key information: {content}"

            max_prompt_length = 4000
            if len(prompt) > max_prompt_length:
                prompt = prompt[:max_prompt_length] + "..."

            response = self.groq_client.chat.completions.create(
                messages=[{"role": "user", "content": prompt}],
                model="llama3-8b-8192",
                max_tokens=1000
            )
            return response.choices[0].message.content
        except Exception as e:
            print(f"Error generating natural language: {str(e)}")
            if len(content) > 2000:
                half_length = len(content) // 2
                first_half = content[:half_length]
                try:
                    return self.generate_natural_language(first_half, content_type)
                except:
                    return None
            return None

    def store_in_vector_db(self, natural_language: str, metadata: Dict) -> str:
        """Store content in vector database"""
        doc_id = f"{metadata['source_file']}_{metadata['content_type']}_{metadata['chunk_id']}_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}"

        self.collection.add(
            documents=[natural_language],
            metadatas=[metadata],
            ids=[doc_id]
        )

        return doc_id

    def process_file(self, file_path: str) -> Dict:
        """Process any supported file type"""
        try:
            file_extension = os.path.splitext(file_path)[1].lower()

            if file_extension == '.xml':
                return self.process_xml_file(file_path)
            elif file_extension == '.pdf':
                return self.process_pdf_file(file_path)
            else:
                return {
                    'success': False,
                    'error': f'Unsupported file type: {file_extension}'
                }
        except Exception as e:
            return {
                'success': False,
                'error': f'Error processing file: {str(e)}'
            }

    def process_xml_file(self, xml_file_path: str) -> Dict:
        """Process XML file with improved chunking"""
        try:
            tree = ET.parse(xml_file_path)
            root = tree.getroot()
            flattened_text = self.flatten_xml_to_text(root)
            chunks = self.chunk_xml_text(flattened_text)

            print(f"Split XML into {len(chunks)} chunks")
            results = []

            for i, chunk in enumerate(chunks):
                print(f"Processing XML chunk {i+1}/{len(chunks)}")
                try:
                    natural_language = self.generate_natural_language(chunk, "xml")

                    if natural_language:
                        metadata = {
                            'source_file': os.path.basename(xml_file_path),
                            'content_type': 'xml',
                            'chunk_id': i,
                            'total_chunks': len(chunks),
                            'timestamp': str(datetime.datetime.now())
                        }
                        doc_id = self.store_in_vector_db(natural_language, metadata)
                        results.append({
                            'chunk': i,
                            'success': True,
                            'doc_id': doc_id,
                            'natural_language': natural_language
                        })
                    else:
                        results.append({
                            'chunk': i,
                            'success': False,
                            'error': 'Failed to generate natural language'
                        })
                except Exception as e:
                    print(f"Error processing chunk {i}: {str(e)}")
                    results.append({
                        'chunk': i,
                        'success': False,
                        'error': str(e)
                    })

            return {
                'success': True,
                'total_chunks': len(chunks),
                'results': results
            }

        except Exception as e:
            return {
                'success': False,
                'error': str(e)
            }

    def process_pdf_file(self, pdf_file_path: str) -> Dict:
            """Process PDF file"""
            try:
                full_text = self.extract_text_from_pdf(pdf_file_path)
                chunks = self.chunk_text(full_text)
    
                print(f"Split PDF into {len(chunks)} chunks")
                results = []
    
                for i, chunk in enumerate(chunks):
                    print(f"Processing PDF chunk {i+1}/{len(chunks)}")
                    natural_language = self.generate_natural_language(chunk, "pdf")
    
                    if natural_language:
                        metadata = {
                            'source_file': os.path.basename(pdf_file_path),
                            'content_type': 'pdf',
                            'chunk_id': i,
                            'total_chunks': len(chunks),
                            'timestamp': str(datetime.datetime.now()),
                            'chunk_size': len(chunk.split())
                        }
                        doc_id = self.store_in_vector_db(natural_language, metadata)
                        results.append({
                            'chunk': i,
                            'success': True,
                            'doc_id': doc_id,
                            'natural_language': natural_language,
                            'original_text': chunk[:200] + "..."
                        })
                    else:
                        results.append({
                            'chunk': i,
                            'success': False,
                            'error': 'Failed to generate natural language summary'
                        })
    
                return {
                    'success': True,
                    'total_chunks': len(chunks),
                    'results': results
                }
    
            except Exception as e:
                return {
                    'success': False,
                    'error': str(e)
                }
    
        def get_available_files(self) -> Dict[str, List[str]]:
            """Get list of all files in the database"""
            try:
                all_entries = self.collection.get(
                    include=['metadatas']
                )
    
                files = {
                    'pdf': set(),
                    'xml': set()
                }
    
                for metadata in all_entries['metadatas']:
                    file_type = metadata['content_type']
                    file_name = metadata['source_file']
                    files[file_type].add(file_name)
    
                return {
                    'pdf': sorted(list(files['pdf'])),
                    'xml': sorted(list(files['xml']))
                }
            except Exception as e:
                print(f"Error getting available files: {str(e)}")
                return {'pdf': [], 'xml': []}
    
        def ask_question_selective(self, question: str, selected_files: List[str], n_results: int = 5) -> str:
            """Ask a question using only the selected files"""
            try:
                filter_dict = {
                    'source_file': {'$in': selected_files}
                }
    
                results = self.collection.query(
                    query_texts=[question],
                    n_results=n_results,
                    where=filter_dict,
                    include=["documents", "metadatas"]
                )
    
                if not results['documents'][0]:
                    return "No relevant content found in the selected files."
    
                context = "\n\n".join(results['documents'][0])
    
                prompt = f"""Based on the following content from the selected files, please answer this question: {question}
    
                Content:
                {context}
    
                Please provide a direct answer based only on the information provided above."""
    
                response = self.groq_client.chat.completions.create(
                    messages=[{"role": "user", "content": prompt}],
                    model="llama3-8b-8192",
                    temperature=0.2
                )
    
                return response.choices[0].message.content
    
            except Exception as e:
                return f"Error processing your question: {str(e)}"