File size: 4,325 Bytes
a220803
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import numpy as np
import torch
from PIL import ImageFile
import torch.nn.functional as F
ImageFile.LOAD_TRUNCATED_IMAGES = True


def warp(img, flow):
    B, _, H, W = flow.shape
    xx = torch.linspace(-1.0, 1.0, W).view(1, 1, 1, W).expand(B, -1, H, -1)
    yy = torch.linspace(-1.0, 1.0, H).view(1, 1, H, 1).expand(B, -1, -1, W)
    grid = torch.cat([xx, yy], 1).to(img)
    flow_ = torch.cat([flow[:, 0:1, :, :] / ((W - 1.0) / 2.0), flow[:, 1:2, :, :] / ((H - 1.0) / 2.0)], 1)
    grid_ = (grid + flow_).permute(0, 2, 3, 1)
    output = F.grid_sample(input=img, grid=grid_, mode='bilinear', padding_mode='border', align_corners=True)
    return output


def make_colorwheel():
    """
    Generates a color wheel for optical flow visualization as presented in:
        Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
        URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf
    Code follows the original C++ source code of Daniel Scharstein.
    Code follows the the Matlab source code of Deqing Sun.
    Returns:
        np.ndarray: Color wheel
    """

    RY = 15
    YG = 6
    GC = 4
    CB = 11
    BM = 13
    MR = 6

    ncols = RY + YG + GC + CB + BM + MR
    colorwheel = np.zeros((ncols, 3))
    col = 0

    # RY
    colorwheel[0:RY, 0] = 255
    colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY)
    col = col+RY
    # YG
    colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG)
    colorwheel[col:col+YG, 1] = 255
    col = col+YG
    # GC
    colorwheel[col:col+GC, 1] = 255
    colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC)
    col = col+GC
    # CB
    colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB)
    colorwheel[col:col+CB, 2] = 255
    col = col+CB
    # BM
    colorwheel[col:col+BM, 2] = 255
    colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM)
    col = col+BM
    # MR
    colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR)
    colorwheel[col:col+MR, 0] = 255
    return colorwheel

def flow_uv_to_colors(u, v, convert_to_bgr=False):
    """
    Applies the flow color wheel to (possibly clipped) flow components u and v.
    According to the C++ source code of Daniel Scharstein
    According to the Matlab source code of Deqing Sun
    Args:
        u (np.ndarray): Input horizontal flow of shape [H,W]
        v (np.ndarray): Input vertical flow of shape [H,W]
        convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
    Returns:
        np.ndarray: Flow visualization image of shape [H,W,3]
    """
    flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8)
    colorwheel = make_colorwheel()  # shape [55x3]
    ncols = colorwheel.shape[0]
    rad = np.sqrt(np.square(u) + np.square(v))
    a = np.arctan2(-v, -u)/np.pi
    fk = (a+1) / 2*(ncols-1)
    k0 = np.floor(fk).astype(np.int32)
    k1 = k0 + 1
    k1[k1 == ncols] = 0
    f = fk - k0
    for i in range(colorwheel.shape[1]):
        tmp = colorwheel[:,i]
        col0 = tmp[k0] / 255.0
        col1 = tmp[k1] / 255.0
        col = (1-f)*col0 + f*col1
        idx = (rad <= 1)
        col[idx]  = 1 - rad[idx] * (1-col[idx])
        col[~idx] = col[~idx] * 0.75   # out of range
        # Note the 2-i => BGR instead of RGB
        ch_idx = 2-i if convert_to_bgr else i
        flow_image[:,:,ch_idx] = np.floor(255 * col)
    return flow_image

def flow_to_image(flow_uv, clip_flow=None, convert_to_bgr=False):
    """
    Expects a two dimensional flow image of shape.
    Args:
        flow_uv (np.ndarray): Flow UV image of shape [H,W,2]
        clip_flow (float, optional): Clip maximum of flow values. Defaults to None.
        convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
    Returns:
        np.ndarray: Flow visualization image of shape [H,W,3]
    """
    assert flow_uv.ndim == 3, 'input flow must have three dimensions'
    assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]'
    if clip_flow is not None:
        flow_uv = np.clip(flow_uv, 0, clip_flow)
    u = flow_uv[:,:,0]
    v = flow_uv[:,:,1]
    rad = np.sqrt(np.square(u) + np.square(v))
    rad_max = np.max(rad)
    epsilon = 1e-5
    u = u / (rad_max + epsilon)
    v = v / (rad_max + epsilon)
    return flow_uv_to_colors(u, v, convert_to_bgr)