File size: 9,203 Bytes
1ccdd5a
 
 
 
 
 
 
 
 
 
e0f96a9
1ccdd5a
 
e0f96a9
 
 
1ccdd5a
 
 
e0f96a9
 
 
 
 
 
 
 
 
 
 
1ccdd5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0f96a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ccdd5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0f96a9
1ccdd5a
e0f96a9
1ccdd5a
 
 
e0f96a9
1ccdd5a
 
e0f96a9
 
1ccdd5a
 
e0f96a9
 
 
1ccdd5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0f96a9
1ccdd5a
 
 
e0f96a9
1ccdd5a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import math

import torch
import torch.nn as nn
from utils import normalize_data
import torch.nn.functional as F
from torch.nn import TransformerEncoder, TransformerEncoderLayer


class StyleEncoder(nn.Module):
    def __init__(self, num_hyperparameters, em_size):
        super().__init__()
        self.em_size = em_size
        self.embedding = nn.Linear(num_hyperparameters, self.em_size)

    def forward(self, hyperparameters):  # B x num_hps
        return self.embedding(hyperparameters)


class StyleEmbEncoder(nn.Module):
    def __init__(self, num_hyperparameters, em_size, num_embeddings=100):
        super().__init__()
        assert num_hyperparameters == 1
        self.em_size = em_size
        self.embedding = nn.Embedding(num_embeddings, self.em_size)

    def forward(self, hyperparameters):  # B x num_hps
        return self.embedding(hyperparameters.squeeze(1))


class _PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout=0.):
        super().__init__()
        self.dropout = nn.Dropout(p=dropout)
        self.d_model = d_model
        self.device_test_tensor = nn.Parameter(torch.tensor(1.))

    def forward(self, x):# T x B x num_features
        assert self.d_model % x.shape[-1]*2 == 0
        d_per_feature = self.d_model // x.shape[-1]
        pe = torch.zeros(*x.shape, d_per_feature, device=self.device_test_tensor.device)
        #position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        interval_size = 10
        div_term = (1./interval_size) * 2*math.pi*torch.exp(torch.arange(0, d_per_feature, 2, device=self.device_test_tensor.device).float()*math.log(math.sqrt(2)))
        #print(div_term/2/math.pi)
        pe[..., 0::2] = torch.sin(x.unsqueeze(-1) * div_term)
        pe[..., 1::2] = torch.cos(x.unsqueeze(-1) * div_term)
        return self.dropout(pe).view(x.shape[0],x.shape[1],self.d_model)


Positional = lambda _, emsize: _PositionalEncoding(d_model=emsize)

class EmbeddingEncoder(nn.Module):
    def __init__(self, num_features, em_size, num_embs=100):
        super().__init__()
        self.num_embs = num_embs
        self.embeddings = nn.Embedding(num_embs * num_features, em_size, max_norm=True)
        self.init_weights(.1)
        self.min_max = (-2,+2)

    @property
    def width(self):
        return self.min_max[1] - self.min_max[0]

    def init_weights(self, initrange):
        self.embeddings.weight.data.uniform_(-initrange, initrange)

    def discretize(self, x):
        split_size = self.width / self.num_embs
        return (x - self.min_max[0] // split_size).int().clamp(0, self.num_embs - 1)

    def forward(self, x):  # T x B x num_features
        x_idxs = self.discretize(x)
        x_idxs += torch.arange(x.shape[-1], device=x.device).view(1, 1, -1) * self.num_embs
        # print(x_idxs,self.embeddings.weight.shape)
        return self.embeddings(x_idxs).mean(-2)


class Normalize(nn.Module):
    def __init__(self, mean, std):
        super().__init__()
        self.mean = mean
        self.std = std

    def forward(self, x):
        return (x-self.mean)/self.std


def get_normalized_uniform_encoder(encoder_creator):
    """
    This can be used to wrap an encoder that is fed uniform samples in [0,1] and normalizes these to 0 mean and 1 std.
    For example, it can be used as `encoder_creator = get_normalized_uniform_encoder(encoders.Linear)`, now this can
    be initialized with `encoder_creator(feature_dim, in_dim)`.
    :param encoder:
    :return:
    """
    return lambda in_dim, out_dim: nn.Sequential(Normalize(.5, math.sqrt(1/12)), encoder_creator(in_dim, out_dim))


def get_normalized_encoder(encoder_creator, data_std):
    return lambda in_dim, out_dim: nn.Sequential(Normalize(0., data_std), encoder_creator(in_dim, out_dim))


class ZNormalize(nn.Module):
    def forward(self, x):
        return (x-x.mean(-1,keepdim=True))/x.std(-1,keepdim=True)


class AppendEmbeddingEncoder(nn.Module):
    def __init__(self, base_encoder, num_features, emsize):
        super().__init__()
        self.num_features = num_features
        self.base_encoder = base_encoder
        self.emb = nn.Parameter(torch.zeros(emsize))

    def forward(self, x):
        if (x[-1] == 1.).all():
            append_embedding = True
        else:
            assert (x[-1] == 0.).all(), "You need to specify as last position whether to append embedding. " \
                                        "If you don't want this behavior, please use the wrapped encoder instead."
            append_embedding = False
        x = x[:-1]
        encoded_x = self.base_encoder(x)
        if append_embedding:
            encoded_x = torch.cat([encoded_x, self.emb[None, None, :].repeat(1, encoded_x.shape[1], 1)], 0)
        return encoded_x

def get_append_embedding_encoder(encoder_creator):
    return lambda num_features, emsize: AppendEmbeddingEncoder(encoder_creator(num_features, emsize), num_features, emsize)


class VariableNumFeaturesEncoder(nn.Module):
    def __init__(self, base_encoder, num_features):
        super().__init__()
        self.base_encoder = base_encoder
        self.num_features = num_features

    def forward(self, x):
        x = x * (self.num_features/x.shape[-1])
        x = torch.cat((x, torch.zeros(*x.shape[:-1], self.num_features - x.shape[-1], device=x.device)), -1)
        return self.base_encoder(x)


def get_variable_num_features_encoder(encoder_creator):
    return lambda num_features, emsize: VariableNumFeaturesEncoder(encoder_creator(num_features, emsize), num_features)

class NoMeanEncoder(nn.Module):
    """
    This can be useful for any prior that is translation invariant in x or y.
    A standard GP for example is translation invariant in x.
    That is, GP(x_test+const,x_train+const,y_train) = GP(x_test,x_train,y_train).
    """
    def __init__(self, base_encoder):
        super().__init__()
        self.base_encoder = base_encoder

    def forward(self, x):
        return self.base_encoder(x - x.mean(0, keepdim=True))


def get_no_mean_encoder(encoder_creator):
    return lambda num_features, emsize: NoMeanEncoder(encoder_creator(num_features, emsize))

Linear = nn.Linear
MLP = lambda num_features, emsize: nn.Sequential(nn.Linear(num_features+1,emsize*2),
                                                 nn.ReLU(),
                                                 nn.Linear(emsize*2,emsize))

class NanHandlingEncoder(nn.Module):
    def __init__(self, num_features, emsize, keep_nans=True):
        super().__init__()
        self.num_features = 2 * num_features if keep_nans else num_features
        self.emsize = emsize
        self.keep_nans = keep_nans
        self.layer = nn.Linear(self.num_features, self.emsize)

    def forward(self, x):
        if self.keep_nans:
            x = torch.cat([torch.nan_to_num(x, nan=0.0), normalize_data(torch.isnan(x) * -1
                                                          + torch.logical_and(torch.isinf(x), torch.sign(x) == 1) * 1
                                                          + torch.logical_and(torch.isinf(x), torch.sign(x) == -1) * 2
                                                          )], -1)
        else:
            x = torch.nan_to_num(x, nan=0.0)
        return self.layer(x)


class Linear(nn.Linear):
    def __init__(self, num_features, emsize, replace_nan_by_zero=False):
        super().__init__(num_features, emsize)
        self.num_features = num_features
        self.emsize = emsize
        self.replace_nan_by_zero = replace_nan_by_zero

    def forward(self, x):
        if self.replace_nan_by_zero:
            x = torch.nan_to_num(x, nan=0.0)
        return super().forward(x)

    def __setstate__(self, state):
        super().__setstate__(state)
        self.__dict__.setdefault('replace_nan_by_zero', True)


class Conv(nn.Module):
    def __init__(self, input_size, emsize):
        super().__init__()
        self.convs = torch.nn.ModuleList([nn.Conv2d(64 if i else 1, 64, 3) for i in range(5)])
        self.linear = nn.Linear(64,emsize)

    def forward(self, x):
        size = math.isqrt(x.shape[-1])
        assert size*size == x.shape[-1]
        x = x.reshape(*x.shape[:-1], 1, size, size)
        for conv in self.convs:
            if x.shape[-1] < 4:
                break
            x = conv(x)
            x.relu_()
        x = nn.AdaptiveAvgPool2d((1,1))(x).squeeze(-1).squeeze(-1)
        return self.linear(x)


class CanEmb(nn.Embedding):
    def __init__(self, num_features, num_embeddings: int, embedding_dim: int, *args, **kwargs):
        assert embedding_dim % num_features == 0
        embedding_dim = embedding_dim // num_features
        super().__init__(num_embeddings, embedding_dim, *args, **kwargs)

    def forward(self, x):
        lx = x.long()
        assert (lx == x).all(), "CanEmb only works with tensors of whole numbers"
        x = super().forward(lx)
        return x.view(*x.shape[:-2], -1)


def get_Canonical(num_classes):
    return lambda num_features, emsize: CanEmb(num_features, num_classes, emsize)


def get_Embedding(num_embs_per_feature=100):
    return lambda num_features, emsize: EmbeddingEncoder(num_features, emsize, num_embs=num_embs_per_feature)