File size: 34,908 Bytes
2875fe6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a785d5a
2875fe6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
import math
import torch
import torch.nn.functional as F

from torch import nn
from einops import reduce
from tqdm.auto import tqdm
from functools import partial
from ..model_utils import default, identity, extract
from .control import *
from .diff_csdi import diff_CSDI
from .csdi import CSDI_base
import numpy as np


def linear_beta_schedule(timesteps):
    scale = 1000 / timesteps
    beta_start = scale * 0.0001
    beta_end = scale * 0.02
    return torch.linspace(beta_start, beta_end, timesteps, dtype=torch.float64)


def cosine_beta_schedule(timesteps, s=0.008):
    """

    cosine schedule

    as proposed in https://openreview.net/forum?id=-NEXDKk8gZ

    """
    steps = timesteps + 1
    x = torch.linspace(0, timesteps, steps, dtype=torch.float64)
    alphas_cumprod = torch.cos(((x / timesteps) + s) / (1 + s) * math.pi * 0.5) ** 2
    alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
    betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
    return torch.clip(betas, 0, 0.999)


class Tiffusion(nn.Module):
    def __init__(

        self,

        seq_length,

        feature_size,

        n_layer_enc=3,

        n_layer_dec=6,

        d_model=None,

        timesteps=1000,

        sampling_timesteps=None,

        loss_type="l1",

        beta_schedule="cosine",

        n_heads=4,

        mlp_hidden_times=4,

        eta=0.0,

        attn_pd=0.0,

        resid_pd=0.0,

        kernel_size=None,

        padding_size=None,

        use_ff=True,

        reg_weight=None,

        control_signal={},

        moving_average=False,

        is_unconditional=False,

        target_strategy="mix",

        **kwargs,

    ):
        super(Tiffusion, self).__init__()

        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

        self.eta, self.use_ff = eta, use_ff
        self.seq_length = seq_length
        self.feature_size = feature_size
        self.ff_weight = default(reg_weight, math.sqrt(self.seq_length) / 5)
        self.sum_weight = default(reg_weight, math.sqrt(self.seq_length // 10) / 50)
        self.training_control_signal = control_signal # training control signal
        self.moving_average = moving_average
        self.is_unconditional = is_unconditional
        self.target_strategy = target_strategy
        
        self.target_strategy = "random"
        config = {
            "model": {
                "timeemb": 128,
                "featureemb": 16,
                "is_unconditional": False,
                "target_strategy": "mix",
            },
            "diffusion": {
                "layers": 3,
                "channels": 64,
                "nheads": 8,
                "diffusion_embedding_dim": 128,
                "is_linear": False,
                "beta_start": 0.0001,
                "beta_end": 0.5,
                "schedule": "quad",
                "num_steps": 50,
            }
        }

        self.emb_time_dim = config["model"]["timeemb"]
        self.emb_feature_dim = config["model"]["featureemb"]
        self.is_unconditional = config["model"]["is_unconditional"]
        self.target_strategy = config["model"]["target_strategy"]
        # parameters for diffusion models
        config_diff = config["diffusion"]
        self.num_steps = config_diff["num_steps"]
        if config_diff["schedule"] == "quad":
            self.beta = np.linspace(
                config_diff["beta_start"] ** 0.5, config_diff["beta_end"] ** 0.5, self.num_steps
            ) ** 2
        elif config_diff["schedule"] == "linear":
            self.beta = np.linspace(
                config_diff["beta_start"], config_diff["beta_end"], self.num_steps
            )

        self.alpha_hat = 1 - self.beta
        self.alpha = np.cumprod(self.alpha_hat)
        self.alpha_torch = torch.tensor(self.alpha).float().to(self.device).unsqueeze(1).unsqueeze(1)
        
        self.emb_total_dim = self.emb_time_dim + self.emb_feature_dim
        if self.is_unconditional == False:
            self.emb_total_dim += 1  # for conditional mask
        self.target_dim = feature_size
        print(feature_size)
        self.embed_layer = nn.Embedding(
            num_embeddings=self.target_dim
            , embedding_dim=self.emb_feature_dim
        )
                
        self.diffmodel = diff_CSDI(
            {
                "layers": 3,
                "channels": 64,
                "nheads": 8,
                "diffusion_embedding_dim": 128,
                "is_linear": False,
                "beta_start": 0.0001,
                "beta_end": 0.5,
                "schedule": "quad",
                "num_steps": 50,
                "side_dim": self.emb_total_dim
            },
            (1 if self.is_unconditional == True else 2)
        )

        if beta_schedule == "linear":
            betas = linear_beta_schedule(timesteps)
        elif beta_schedule == "cosine":
            betas = cosine_beta_schedule(timesteps)
        else:
            raise ValueError(f"unknown beta schedule {beta_schedule}")

        alphas = 1.0 - betas
        alphas_cumprod = torch.cumprod(alphas, dim=0)
        alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (1, 0), value=1.0)

        (timesteps,) = betas.shape
        self.num_timesteps = int(timesteps)
        self.loss_type = loss_type

        # sampling related parameters
        self.sampling_timesteps = default(
            sampling_timesteps, timesteps
        )  # default num sampling timesteps to number of timesteps at training

        assert self.sampling_timesteps <= timesteps
        self.fast_sampling = self.sampling_timesteps < timesteps

        # helper function to register buffer from float64 to float32

        register_buffer = lambda name, val: self.register_buffer(
            name, val.to(torch.float32)
        )

        register_buffer("betas", betas)
        register_buffer("alphas_cumprod", alphas_cumprod)
        register_buffer("alphas_cumprod_prev", alphas_cumprod_prev)

        # calculations for diffusion q(x_t | x_{t-1}) and others

        register_buffer("sqrt_alphas_cumprod", torch.sqrt(alphas_cumprod))
        register_buffer(
            "sqrt_one_minus_alphas_cumprod", torch.sqrt(1.0 - alphas_cumprod)
        )
        register_buffer("log_one_minus_alphas_cumprod", torch.log(1.0 - alphas_cumprod))
        register_buffer("sqrt_recip_alphas_cumprod", torch.sqrt(1.0 / alphas_cumprod))
        register_buffer(
            "sqrt_recipm1_alphas_cumprod", torch.sqrt(1.0 / alphas_cumprod - 1)
        )

        # calculations for posterior q(x_{t-1} | x_t, x_0)

        posterior_variance = (
            betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod)
        )

        # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)

        register_buffer("posterior_variance", posterior_variance)

        # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain

        register_buffer(
            "posterior_log_variance_clipped",
            torch.log(posterior_variance.clamp(min=1e-20)),
        )
        register_buffer(
            "posterior_mean_coef1",
            betas * torch.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod),
        )
        register_buffer(
            "posterior_mean_coef2",
            (1.0 - alphas_cumprod_prev) * torch.sqrt(alphas) / (1.0 - alphas_cumprod),
        )

        # calculate reweighting

        register_buffer(
            "loss_weight",
            torch.sqrt(alphas) * torch.sqrt(1.0 - alphas_cumprod) / betas / 100,
        )

    def predict_noise_from_start(self, x_t, t, x0):
        return (
            extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - x0
        ) / extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)

    def predict_start_from_noise(self, x_t, t, noise):
        return (
            extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
            - extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
        )

    def q_posterior(self, x_start, x_t, t):
        posterior_mean = (
            extract(self.posterior_mean_coef1, t, x_t.shape) * x_start
            + extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
        )
        posterior_variance = extract(self.posterior_variance, t, x_t.shape)
        posterior_log_variance_clipped = extract(
            self.posterior_log_variance_clipped, t, x_t.shape
        )
        return posterior_mean, posterior_variance, posterior_log_variance_clipped

    def output(self, x, t, padding_masks=None, control_signal=None):
        """Modified output function to work with CSDI"""
        if isinstance(t, int):
            t = torch.tensor([t]).to(x.device)
            
        # Prepare side info
        observed_tp = torch.arange(x.shape[1], device=x.device).float()
        observed_tp = observed_tp.unsqueeze(0).expand(x.shape[0], -1)
        side_info = self.get_side_info(observed_tp, padding_masks)
        
        # Get model prediction
        predicted, _ = self.diffmodel(x, side_info, t)
        return predicted

    def generate_mts(self, batch_size=16):
        feature_size, seq_length = self.feature_size, self.seq_length
        sample_fn = self.fast_sample if self.fast_sampling else self.sample
        return sample_fn((batch_size, seq_length, feature_size))

    def generate_mts_infill(self, target, partial_mask=None, clip_denoised=True, model_kwargs=None):
        """Improved method for conditional generation"""
        with torch.no_grad():
            # Setup inputs
            observed_tp = torch.arange(target.shape[1], device=target.device).float()
            observed_tp = observed_tp.unsqueeze(0).expand(target.shape[0], -1)
            
            # Generate side info
            side_info = self.get_side_info(observed_tp, partial_mask)
            
            # Sample using CSDI imputation
            samples = self.impute(
                observed_data=target,
                cond_mask=partial_mask,
                side_info=side_info,
                n_samples=1
            )
            
            return samples.squeeze(1)

    # def fast_sample_infill_float_mask(
    #     self,
    #     shape,
    #     target: torch.Tensor,  # target time series # [B, L, C]
    #     sampling_timesteps,
    #     partial_mask: torch.Tensor = None,  # float mask between 0 and 1 # [B, L, C]
    #     clip_denoised=True,
    #     model_kwargs=None,
    # ):
    #     batch, device, total_timesteps, eta = (
    #         shape[0],
    #         self.betas.device,
    #         self.num_timesteps,
    #         self.eta,
    #     )
    #     # [-1, 0, 1, 2, ..., T-1] when sampling_timesteps == total_timesteps
    #     times = torch.linspace(-1, total_timesteps - 1, steps=sampling_timesteps + 1)

    #     times = list(reversed(times.int().tolist()))
    #     time_pairs = list(
    #         zip(times[:-1], times[1:])
    #     )  # [(T-1, T-2), (T-2, T-3), ..., (1, 0), (0, -1)]

    #     # Initialize with noise
    #     img = torch.randn(shape, device=device) # [B, L, C]

    #     for time, time_next in tqdm(
    #         time_pairs, desc="conditional sampling loop time step"
    #     ):
    #         time_cond = torch.full((batch,), time, device=device, dtype=torch.long)
    #         # pred_noise, x_start, *_ = self.model_predictions(
    #         #     img,
    #         #     time_cond,
    #         #     clip_x_start=clip_denoised,
    #         #     control_signal=model_kwargs.get("model_control_signal", {}),
    #         # )
    #         # x, t, clip_x_start=False, padding_masks=None, control_signal=None
    #         # if padding_masks is None:
    #         padding_masks = torch.ones(
    #             img.shape[0], self.seq_length, dtype=bool, device=img.device
    #         )
    #         maybe_clip = (
    #             partial(torch.clamp, min=-1.0, max=1.0) if clip_denoised else identity
    #         )
    #         # def output(self, x, t, padding_masks=None, control_signal=None):
    #         #     """Modified output function to work with CSDI"""
    #         #     if isinstance(t, int):
    #         #         t = torch.tensor([t]).to(x.device)
                    
    #         #     # Prepare side info
    #         #     observed_tp = torch.arange(x.shape[1], device=x.device).float()
    #         #     observed_tp = observed_tp.unsqueeze(0).expand(x.shape[0], -1)
    #         #     side_info = self.get_side_info(observed_tp, padding_masks)
                
    #         #     # Get model prediction
    #         #     predicted, _ = self.diffmodel(x, side_info, t)
    #         #     return predicted
    #         predicted, _ = self.diffmodel(img, time_cond)
    #         coeff1 = 1 / self.alpha_hat[time] ** 0.5
    #         coeff2 = (1 - self.alpha_hat[time]) / (1 - self.alpha[time]) ** 0.5
    #         x_start = coeff1 * (img - coeff2 * predicted)
    #         # x_start = self.output(img, time_cond, padding_masks)
    #         x_start = maybe_clip(x_start)
    #         pred_noise = self.predict_noise_from_start(img, time_cond, x_start)
    #         # return pred_noise, x_start

    #         if time_next < 0:
    #             img = x_start
    #             continue

    #         # Compute the predicted mean
    #         alpha = self.alphas_cumprod[time]
    #         alpha_next = self.alphas_cumprod[time_next]
    #         sigma = (
    #             eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
    #         )
    #         c = (1 - alpha_next - sigma**2).sqrt()

    #         noise = torch.randn_like(img)
    #         pred_mean = x_start * alpha_next.sqrt() + c * pred_noise
    #         img = pred_mean + sigma * noise

    #         # # Langevin Dynamics part for additional gradient updates
    #         # img = self.langevin_fn(
    #         #     sample=img,
    #         #     mean=pred_mean,
    #         #     sigma=sigma,
    #         #     t=time_cond,
    #         #     tgt_embs=target,
    #         #     partial_mask=partial_mask,
    #         #     enable_float_mask=True,
    #         #     **model_kwargs,
    #         # )
    #         img = img * (1 - partial_mask) + target * partial_mask

    #     img = img * (1 - partial_mask) + target * partial_mask
    #     return img


    def langevin_fn(

        self,

        coef,

        partial_mask,

        tgt_embs,

        learning_rate,

        sample,

        mean,

        sigma,

        t,

        coef_=0.0,

        gradient_control_signal={},

        model_control_signal={},

        side_info=None,

        **kwargs,

    ):
        # we thus run more gradient updates at large diffusion step t to guide the generation then
        # reduce the number of gradient steps in stages to accelerate sampling.
        if t[0].item() < self.num_timesteps * 0.02 :
            K = 0
        elif t[0].item() > self.num_timesteps * 0.9:
            K = 3
        elif t[0].item() > self.num_timesteps * 0.75:
            K = 2
            learning_rate = learning_rate * 0.5
        else:
            K = 1
            learning_rate = learning_rate * 0.25

        input_embs_param = torch.nn.Parameter(sample)

        # 获取时间相关的权重调整因子
        time_weight = get_time_dependent_weights(t[0], self.num_timesteps)

        with torch.enable_grad():
            for iteration in range(K):
                # x_i+1 = x_i + noise * grad(logp(x_i)) + sqrt(2*noise) * z_i
                optimizer = torch.optim.Adagrad([input_embs_param], lr=learning_rate)
                optimizer.zero_grad()

                # x_start = self.output(
                #     x=input_embs_param,
                #     t=t,
                #     control_signal=model_control_signal,
                # )

                # Prepare model input
                # if self.is_unconditional:
                #     diff_input = cond_mask * observed_data + (1.0 - cond_mask) * current_sample
                #     diff_input = diff_input.unsqueeze(1)
                # else:
                #     cond_obs = (cond_mask * observed_data).unsqueeze(1)
                #     noisy_target = ((1 - cond_mask) * current_sample).unsqueeze(1)
                #     diff_input = torch.cat([cond_obs, noisy_target], dim=1)
                if self.is_unconditional:
                    diff_input = input_embs_param.unsqueeze(1)
                else:
                    cond_obs = (partial_mask * tgt_embs).unsqueeze(1) 
                    noisy_target = ((1 - partial_mask) * input_embs_param).unsqueeze(1)
                    diff_input = torch.cat([cond_obs, noisy_target], dim=1)

                x_start, _ = self.diffmodel(diff_input, side_info, t)


                if sigma.mean() == 0:
                    logp_term = (
                        coef * ((mean - input_embs_param) ** 2 / 1.0).mean(dim=0).sum()
                    )
                    # determine the partical_mask is float
                    if kwargs.get("enable_float_mask", False):
                        infill_loss = (x_start * (partial_mask) - tgt_embs * (partial_mask)) ** 2
                    else:
                        infill_loss = (x_start[partial_mask] - tgt_embs[partial_mask]) ** 2
                    infill_loss = infill_loss.mean(dim=0).sum()
                else:
                    logp_term = (
                        coef
                        * ((mean - input_embs_param) ** 2 / sigma).mean(dim=0).sum()
                    )
                    if kwargs.get("enable_float_mask", False):
                        infill_loss = (x_start * (partial_mask) - tgt_embs * (partial_mask)) ** 2
                    else:
                        infill_loss = (x_start[partial_mask] - tgt_embs[partial_mask]) ** 2
                    infill_loss = (infill_loss / sigma.mean()).mean(dim=0).sum()
                gradient_scale = gradient_control_signal.get("gradient_scale", 1.0)  # 全局梯度缩放因子
                control_loss = 0

                auc_sum, peak_points, bar_regions, target_freq = \
                    gradient_control_signal.get("auc"), gradient_control_signal.get("peak_points"), gradient_control_signal.get("bar_regions"), gradient_control_signal.get("target_freq")

                # 1. 原有的sum控制
                if auc_sum is not None:
                    sum_weight = gradient_control_signal.get("auc_weight", 1.0) * time_weight
                    auc_loss = - sum_weight * sum_guidance(
                        x=input_embs_param,
                        t=t,
                        target_sum=auc_sum,
                        gradient_scale=gradient_scale,
                        segments=gradient_control_signal.get("segments", ())
                    )
                    control_loss += auc_loss

                # 峰值引导
                if peak_points is not None:
                    peak_weight = gradient_control_signal.get("peak_weight", 1.0) * time_weight
                    peak_loss = - peak_weight * peak_guidance(
                        x=input_embs_param,
                        t=t,
                        peak_points=peak_points,
                        window_size=gradient_control_signal.get("peak_window_size", 5),
                        alpha_1=gradient_control_signal.get("peak_alpha_1", 1.2),
                        gradient_scale=gradient_scale
                    )
                    control_loss += peak_loss

                # 区间引导
                if bar_regions is not None:
                    bar_weight = gradient_control_signal.get("bar_weight", 1.0) * time_weight
                    bar_loss = -bar_weight * bar_guidance(
                        x=input_embs_param,
                        t=t,
                        bar_regions=bar_regions,
                        gradient_scale=gradient_scale
                    )
                    control_loss += bar_loss

                # 频率引导
                if target_freq is not None:
                    freq_weight = gradient_control_signal.get("freq_weight", 1.0) * time_weight
                    freq_loss = -freq_weight * frequency_guidance(
                        x=input_embs_param,
                        t=t,
                        target_freq=target_freq,
                        freq_weight=freq_weight,
                        gradient_scale=gradient_scale
                    )
                    control_loss += freq_loss


                loss = logp_term + infill_loss + control_loss
                loss.backward()
                optimizer.step()
                torch.nn.utils.clip_grad_norm_([input_embs_param], gradient_control_signal.get("max_grad_norm", 1.0))

                epsilon = torch.randn_like(input_embs_param.data)
                noise_scale = coef_ * sigma.mean().item()
                input_embs_param = torch.nn.Parameter(
                    (
                        input_embs_param.data + noise_scale * epsilon
                    ).detach()
                )

        if kwargs.get("enable_float_mask", False):
            sample = sample * partial_mask + input_embs_param.data * (1 - partial_mask)
        else:
            sample[~partial_mask] = input_embs_param.data[~partial_mask]
        return sample

    def predict_weighted_points(

        self,

        observed_points: torch.Tensor,

        observed_mask: torch.Tensor,

        coef=1e-1,

        stepsize=1e-1,

        sampling_steps=50,

        **kargs,

    ):
        model_kwargs = {}
        model_kwargs["coef"] = coef
        model_kwargs["learning_rate"] = stepsize
        model_kwargs = {**model_kwargs, **kargs}
        assert len(observed_points.shape) == 2, "observed_points should be 2D, batch size = 1"
        x = observed_points.unsqueeze(0)
        float_mask = observed_mask.unsqueeze(0) # x != 0, 1 for observed, 0 for missing, bool tensor
        binary_mask = float_mask.clone()
        binary_mask[binary_mask > 0] = 1

        x = x * 2 - 1 # normalize
        self.device = x.device
        x, float_mask, binary_mask = x.to(self.device), float_mask.to(self.device), binary_mask.to(self.device)
        if sampling_steps == self.num_timesteps:
            print("normal sampling")
            raise NotImplementedError
            sample = self.ema.ema_model.sample_infill_float_mask(
                shape=x.shape,
                target=x * binary_mask, # x * t_m, 1 for observed, 0 for missing
                partial_mask=float_mask,
                model_kwargs=model_kwargs,
            )
            # x: partially noise : (batch_size, seq_length, feature_dim)
        else:
            print("fast sampling")
            sample = self.fast_sample_infill_float_mask(
                shape=x.shape,
                target=x * binary_mask, # x * t_m, 1 for observed, 0 for missing
                partial_mask=float_mask,
                model_kwargs=model_kwargs,
                sampling_timesteps=sampling_steps,
            )

        # unnormalize
        sample = (sample + 1) / 2
        return sample.squeeze(0).detach().cpu().numpy()

    def forward(self, x, **kwargs):
        """Modified forward pass for CSDI training"""
        # Convert input from [B, C, L] to [B, L, C]
        observed_data = x.permute(0, 2, 1)
        observed_mask = kwargs.get("observed_mask", torch.ones_like(observed_data))
        observed_tp = torch.arange(observed_data.shape[1], device=x.device).float()
        observed_tp = observed_tp.unsqueeze(0).expand(x.shape[0], -1)
        
        # Generate masks
        is_train = kwargs.get("is_train", 1)
        if is_train:
            cond_mask = self.get_randmask(observed_mask)
        else:
            gt_mask = kwargs.get("gt_mask", observed_mask.clone())
            if "pred_length" in kwargs:
                gt_mask[:,:,-kwargs["pred_length"]:] = 0
            cond_mask = gt_mask
            
        # Get side info and calculate loss
        side_info = self.get_side_info(observed_tp, cond_mask)
        loss_func = self.calc_loss if is_train else self.calc_loss_valid
        return loss_func(observed_data, cond_mask, observed_mask, side_info, is_train)

    def time_embedding(self, pos, d_model=128):
        pe = torch.zeros(pos.shape[0], pos.shape[1], d_model).to(pos.device)
        position = pos.unsqueeze(2)
        div_term = 1 / torch.pow(
            10000.0, torch.arange(0, d_model, 2).to(pos.device) / d_model
        )
        pe[:, :, 0::2] = torch.sin(position * div_term)
        pe[:, :, 1::2] = torch.cos(position * div_term)
        return pe

    def get_randmask(self, observed_mask):
        rand_for_mask = torch.rand_like(observed_mask) * observed_mask
        rand_for_mask = rand_for_mask.reshape(len(rand_for_mask), -1)
        for i in range(len(observed_mask)):
            sample_ratio = np.random.rand()  # missing ratio
            num_observed = observed_mask[i].sum().item()
            num_masked = round(num_observed * sample_ratio)
            rand_for_mask[i][rand_for_mask[i].topk(num_masked).indices] = -1
        cond_mask = (rand_for_mask > 0).reshape(observed_mask.shape).float()
        return cond_mask

    def get_hist_mask(self, observed_mask, for_pattern_mask=None):
        if for_pattern_mask is None:
            for_pattern_mask = observed_mask
        if self.target_strategy == "mix":
            rand_mask = self.get_randmask(observed_mask)

        cond_mask = observed_mask.clone()
        for i in range(len(cond_mask)):
            mask_choice = np.random.rand()
            if self.target_strategy == "mix" and mask_choice > 0.5:
                cond_mask[i] = rand_mask[i]
            else:  # draw another sample for histmask (i-1 corresponds to another sample)
                cond_mask[i] = cond_mask[i] * for_pattern_mask[i - 1] 
        return cond_mask

    def get_test_pattern_mask(self, observed_mask, test_pattern_mask):
        return observed_mask * test_pattern_mask


    def get_side_info(self, observed_tp, cond_mask):
        B, K, L = cond_mask.shape

        time_embed = self.time_embedding(observed_tp, self.emb_time_dim)  # (B,L,emb) torch.Size([64, 24, 128])
        # print(time_embed.shape)
        time_embed = time_embed.unsqueeze(2).expand(-1, -1, K, -1)
        feature_embed = self.embed_layer(
            torch.arange(self.target_dim).to(observed_tp.device)
        )  # (K, emb)
        # print("feature_embed",feature_embed.shape)
        feature_embed = feature_embed.unsqueeze(0).unsqueeze(0).expand(B, L, -1, -1)
        
        # torch.Size([64, 24, 24, 128])[64, 28, 28, 16])    
        # print(time_embed.shape, feature_embed.shape)
        side_info = torch.cat([time_embed, feature_embed], dim=-1)  # (B,L,K,*)
        side_info = side_info.permute(0, 3, 2, 1)  # (B,*,K,L)

        if self.is_unconditional == False:
            side_mask = cond_mask.unsqueeze(1)  # (B,1,K,L)
            side_info = torch.cat([side_info, side_mask], dim=1)

        return side_info

    def calc_loss_valid(

        self, observed_data, cond_mask, observed_mask, side_info, is_train

    ):
        loss_sum = 0
        for t in range(self.num_steps):  # calculate loss for all t
            loss = self.calc_loss(
                observed_data, cond_mask, observed_mask, side_info, is_train, set_t=t
            )
            loss_sum += loss.detach()
        return loss_sum / self.num_steps

    def calc_loss(

        self, observed_data, cond_mask, observed_mask, side_info, is_train, set_t=-1

    ):
        B, K, L = observed_data.shape
        if is_train != 1:  # for validation
            t = (torch.ones(B) * set_t).long().to(self.device)
        else:
            t = torch.randint(0, self.num_steps, [B]).to(self.device)
        current_alpha = self.alpha_torch[t]  # (B,1,1)
        noise = torch.randn_like(observed_data)
        noisy_data = (current_alpha ** 0.5) * observed_data + (1.0 - current_alpha) ** 0.5 * noise

        total_input = self.set_input_to_diffmodel(noisy_data, observed_data, cond_mask)

        predicted, _ = self.diffmodel(total_input, side_info, t)  # (B,K,L)

        target_mask = observed_mask - cond_mask
        residual = (noise - predicted) * target_mask
        num_eval = target_mask.sum()
        loss = (residual ** 2).sum() / (num_eval if num_eval > 0 else 1)
        return loss

    def evaluate(self, batch, n_samples):
        (
            observed_data, # [B, L, K]
            observed_mask, # 1 for observed, 0 for missing
            observed_tp, # [0, 1, 2, ..., L-1]
            gt_mask,
            _,
            cut_length,
        ) = self.process_data(batch)

        with torch.no_grad():
            cond_mask = gt_mask
            target_mask = observed_mask - cond_mask # 1 for missing, 0 for observed

            side_info = self.get_side_info(observed_tp, cond_mask)

            samples = self.impute(observed_data, cond_mask, side_info, n_samples)

            for i in range(len(cut_length)):  # to avoid double evaluation
                target_mask[i, ..., 0 : cut_length[i].item()] = 0
        return samples, observed_data, target_mask, observed_mask, observed_tp

    def impute(self, observed_data, cond_mask, side_info, n_samples):
        """Modified impute function with Langevin dynamics and control signals"""
        B, K, L = observed_data.shape
        imputed_samples = torch.zeros(B, n_samples, K, L).to(self.device)
        
        # Setup sampling parameters
        # times = torch.linspace(-1, self.num_steps - 1, steps=self.sampling_timesteps + 1)
        # times = list(reversed(times.int().tolist()))
        # time_pairs = list(zip(times[:-1], times[1:]))
        for i in range(n_samples):
            # Initialize with noise
            current_sample = torch.randn_like(observed_data)
            
            # for t, time_next in tqdm(time_pairs, desc="Imputation sampling"):
            for t in range(self.num_steps - 1, -1, -1):
                # Prepare time condition
                # time_cond = torch.full((B,), time, device=self.device, dtype=torch.long)
                time_cond = torch.tensor([t]).to(self.device)

                # Prepare model input
                if self.is_unconditional:
                    diff_input = cond_mask * observed_data + (1.0 - cond_mask) * current_sample
                    diff_input = diff_input.unsqueeze(1)
                else:
                    cond_obs = (cond_mask * observed_data).unsqueeze(1)
                    noisy_target = ((1 - cond_mask) * current_sample).unsqueeze(1)
                    diff_input = torch.cat([cond_obs, noisy_target], dim=1)
                    
                predicted, _ = self.diffmodel(diff_input, side_info, torch.tensor([t]).to(self.device))

                coeff1 = 1 / self.alpha_hat[t] ** 0.5
                coeff2 = (1 - self.alpha_hat[t]) / (1 - self.alpha[t]) ** 0.5
                current_sample = coeff1 * (current_sample - coeff2 * predicted)

                if t > 0:
                    noise = torch.randn_like(current_sample)
                    sigma = (
                        (1.0 - self.alpha[t - 1]) / (1.0 - self.alpha[t]) * self.beta[t]
                    ) ** 0.5
                    current_sample += sigma * noise

                # # Get prediction
                # predicted = self.diffmodel(diff_input, side_info, time_cond)[0]

                # if time_next < 0:
                #     current_sample = predicted
                #     continue

                # # Update sample with noise
                # alpha = self.alpha[time]
                # alpha_next = self.alpha[time_next]

                # # Compute transition parameters
                # sigma = self.eta * ((1 - alpha_next) / (1 - alpha) * (1 - alpha / alpha_next)).sqrt()
                # c = (1 - alpha_next - sigma**2).sqrt()
                
                # # Update sample
                # noise = torch.randn_like(current_sample)
                # pred_mean = predicted * alpha_next.sqrt() + c * current_sample
                # current_sample = pred_mean + sigma * noise

                # # # Apply Langevin dynamics and control signals
                # # if model_kwargs is not None:
                # #     current_sample = self.langevin_fn(
                # #         sample=current_sample,
                # #         mean=pred_mean,
                # #         sigma=sigma,
                # #         t=time_cond,
                # #         tgt_embs=observed_data,
                # #         partial_mask=cond_mask,
                # #         enable_float_mask=True,
                # #         side_info=side_info,
                # #         **model_kwargs
                # #     )
                
                # # Apply conditioning
                # current_sample = current_sample * (1 - cond_mask) + observed_data * cond_mask
                    
            imputed_samples[:, i] = current_sample
            
        return imputed_samples

    def fast_sample_infill_float_mask(

        self,

        shape,

        target: torch.Tensor,

        sampling_timesteps,

        partial_mask: torch.Tensor = None,

        clip_denoised=True,

        model_kwargs=None,

    ):
        """Simplified fast sampling that uses improved impute function"""
        batch = shape[0]
        device = self.device
        
        target = target.permute(0, 2, 1)
        partial_mask = partial_mask.permute(0, 2, 1)

        # Generate timepoints
        observed_tp = torch.arange(shape[1], device=device).float()
        observed_tp = observed_tp.unsqueeze(0).expand(batch, -1)

        # Get side info
        side_info = self.get_side_info(observed_tp, partial_mask)

        # Use modified impute function with control signals
        samples = self.impute(
            observed_data=target,
            cond_mask=partial_mask,
            side_info=side_info,
            n_samples=1,
        )

        return samples.squeeze(1).permute(0, 2, 1)