Spaces:
Sleeping
Sleeping
File size: 6,883 Bytes
2875fe6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from linear_attention_transformer import LinearAttentionTransformer
def get_torch_trans(heads=8, layers=1, channels=64):
encoder_layer = nn.TransformerEncoderLayer(
d_model=channels, nhead=heads, dim_feedforward=64, activation="gelu"
)
return nn.TransformerEncoder(encoder_layer, num_layers=layers)
def get_linear_trans(heads=8,layers=1,channels=64,localheads=0,localwindow=0):
return LinearAttentionTransformer(
dim = channels,
depth = layers,
heads = heads,
max_seq_len = 256,
n_local_attn_heads = 0,
local_attn_window_size = 0,
)
def Conv1d_with_init(in_channels, out_channels, kernel_size):
layer = nn.Conv1d(in_channels, out_channels, kernel_size)
nn.init.kaiming_normal_(layer.weight)
return layer
class DiffusionEmbedding(nn.Module):
def __init__(self, num_steps, embedding_dim=128, projection_dim=None):
super().__init__()
if projection_dim is None:
projection_dim = embedding_dim
self.register_buffer(
"embedding",
self._build_embedding(num_steps, embedding_dim / 2),
persistent=False,
)
self.projection1 = nn.Linear(embedding_dim, projection_dim)
self.projection2 = nn.Linear(projection_dim, projection_dim)
def forward(self, diffusion_step):
x = self.embedding[diffusion_step]
x = self.projection1(x)
x = F.silu(x)
x = self.projection2(x)
x = F.silu(x)
return x
def _build_embedding(self, num_steps, dim=64):
steps = torch.arange(num_steps).unsqueeze(1) # (T,1)
frequencies = 10.0 ** (torch.arange(dim) / (dim - 1) * 4.0).unsqueeze(0) # (1,dim)
table = steps * frequencies # (T,dim)
table = torch.cat([torch.sin(table), torch.cos(table)], dim=1) # (T,dim*2)
return table
class diff_CSDI(nn.Module):
def __init__(self, config, inputdim=2):
super().__init__()
self.channels = config["channels"]
self.diffusion_embedding = DiffusionEmbedding(
num_steps=config["num_steps"],
embedding_dim=config["diffusion_embedding_dim"],
)
self.input_projection = Conv1d_with_init(inputdim, self.channels, 1)
self.output_projection1 = Conv1d_with_init(self.channels, self.channels, 1)
self.output_projection2 = Conv1d_with_init(self.channels, 1, 1)
nn.init.zeros_(self.output_projection2.weight)
self.residual_layers = nn.ModuleList(
[
ResidualBlock(
side_dim=config["side_dim"],
channels=self.channels,
diffusion_embedding_dim=config["diffusion_embedding_dim"],
nheads=config["nheads"],
is_linear=config["is_linear"],
)
for _ in range(config["layers"])
]
)
def forward(self, x, cond_info, diffusion_step):
B, inputdim, K, L = x.shape
x = x.reshape(B, inputdim, K * L)
x = self.input_projection(x)
x = F.relu(x)
x = x.reshape(B, self.channels, K, L)
diffusion_emb = self.diffusion_embedding(diffusion_step)
skip = []
for layer in self.residual_layers:
x, skip_connection = layer(x, cond_info, diffusion_emb)
skip.append(skip_connection)
x = torch.sum(torch.stack(skip), dim=0) / math.sqrt(len(self.residual_layers))
x = x.reshape(B, self.channels, K * L)
x = self.output_projection1(x) # (B,channel,K*L)
x = F.relu(x)
x = self.output_projection2(x) # (B,1,K*L)
x = x.reshape(B, K, L)
return x, 0
class ResidualBlock(nn.Module):
def __init__(self, side_dim, channels, diffusion_embedding_dim, nheads, is_linear=False):
super().__init__()
self.diffusion_projection = nn.Linear(diffusion_embedding_dim, channels)
self.cond_projection = Conv1d_with_init(side_dim, 2 * channels, 1)
self.mid_projection = Conv1d_with_init(channels, 2 * channels, 1)
self.output_projection = Conv1d_with_init(channels, 2 * channels, 1)
self.is_linear = is_linear
if is_linear:
self.time_layer = get_linear_trans(heads=nheads,layers=1,channels=channels)
self.feature_layer = get_linear_trans(heads=nheads,layers=1,channels=channels)
else:
self.time_layer = get_torch_trans(heads=nheads, layers=1, channels=channels)
self.feature_layer = get_torch_trans(heads=nheads, layers=1, channels=channels)
def forward_time(self, y, base_shape):
B, channel, K, L = base_shape
if L == 1:
return y
y = y.reshape(B, channel, K, L).permute(0, 2, 1, 3).reshape(B * K, channel, L)
if self.is_linear:
y = self.time_layer(y.permute(0, 2, 1)).permute(0, 2, 1)
else:
y = self.time_layer(y.permute(2, 0, 1)).permute(1, 2, 0)
y = y.reshape(B, K, channel, L).permute(0, 2, 1, 3).reshape(B, channel, K * L)
return y
def forward_feature(self, y, base_shape):
B, channel, K, L = base_shape
if K == 1:
return y
y = y.reshape(B, channel, K, L).permute(0, 3, 1, 2).reshape(B * L, channel, K)
if self.is_linear:
y = self.feature_layer(y.permute(0, 2, 1)).permute(0, 2, 1)
else:
y = self.feature_layer(y.permute(2, 0, 1)).permute(1, 2, 0)
y = y.reshape(B, L, channel, K).permute(0, 2, 3, 1).reshape(B, channel, K * L)
return y
def forward(self, x, cond_info, diffusion_emb):
B, channel, K, L = x.shape
base_shape = x.shape
x = x.reshape(B, channel, K * L)
diffusion_emb = self.diffusion_projection(diffusion_emb).unsqueeze(-1) # (B,channel,1)
y = x + diffusion_emb
y = self.forward_time(y, base_shape)
y = self.forward_feature(y, base_shape) # (B,channel,K*L)
y = self.mid_projection(y) # (B,2*channel,K*L)
_, cond_dim, _, _ = cond_info.shape
cond_info = cond_info.reshape(B, cond_dim, K * L)
cond_info = self.cond_projection(cond_info) # (B,2*channel,K*L)
# RuntimeError: Given groups=1, weight of size [128, 28, 1], expected input[64, 145, 672] to have 28 channels, but got 145 channels instead
y = y + cond_info
gate, filter = torch.chunk(y, 2, dim=1)
y = torch.sigmoid(gate) * torch.tanh(filter) # (B,channel,K*L)
y = self.output_projection(y)
residual, skip = torch.chunk(y, 2, dim=1)
x = x.reshape(base_shape)
residual = residual.reshape(base_shape)
skip = skip.reshape(base_shape)
return (x + residual) / math.sqrt(2.0), skip
|