File size: 9,606 Bytes
2875fe6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import numpy as np
import torch
import torch.nn as nn
from .diff_csdi import diff_CSDI


class CSDI_base(nn.Module):
    # def __init__(self, target_dim, config, device):
    #     super().__init__()
    #     self.device = device
    #     self.target_dim = target_dim

    #     self.emb_time_dim = config["model"]["timeemb"]
    #     self.emb_feature_dim = config["model"]["featureemb"]
    #     self.is_unconditional = config["model"]["is_unconditional"]
    #     self.target_strategy = config["model"]["target_strategy"]

    #     self.emb_total_dim = self.emb_time_dim + self.emb_feature_dim
    #     if self.is_unconditional == False:
    #         self.emb_total_dim += 1  # for conditional mask
    #     self.embed_layer = nn.Embedding(
    #         num_embeddings=self.target_dim, embedding_dim=self.emb_feature_dim
    #     )

    #     config_diff = config["diffusion"]
    #     config_diff["side_dim"] = self.emb_total_dim

    #     input_dim = 1 if self.is_unconditional == True else 2
    #     self.diffmodel = diff_CSDI(config_diff, input_dim)

    #     # parameters for diffusion models
    #     self.num_steps = config_diff["num_steps"]
    #     if config_diff["schedule"] == "quad":
    #         self.beta = np.linspace(
    #             config_diff["beta_start"] ** 0.5, config_diff["beta_end"] ** 0.5, self.num_steps
    #         ) ** 2
    #     elif config_diff["schedule"] == "linear":
    #         self.beta = np.linspace(
    #             config_diff["beta_start"], config_diff["beta_end"], self.num_steps
    #         )

    #     self.alpha_hat = 1 - self.beta
    #     self.alpha = np.cumprod(self.alpha_hat)
    #     self.alpha_torch = torch.tensor(self.alpha).float().to(self.device).unsqueeze(1).unsqueeze(1)

    def time_embedding(self, pos, d_model=128):
        pe = torch.zeros(pos.shape[0], pos.shape[1], d_model).to(self.device)
        position = pos.unsqueeze(2)
        div_term = 1 / torch.pow(
            10000.0, torch.arange(0, d_model, 2).to(self.device) / d_model
        )
        pe[:, :, 0::2] = torch.sin(position * div_term)
        pe[:, :, 1::2] = torch.cos(position * div_term)
        return pe

    def get_randmask(self, observed_mask):
        rand_for_mask = torch.rand_like(observed_mask) * observed_mask
        rand_for_mask = rand_for_mask.reshape(len(rand_for_mask), -1)
        for i in range(len(observed_mask)):
            sample_ratio = np.random.rand()  # missing ratio
            num_observed = observed_mask[i].sum().item()
            num_masked = round(num_observed * sample_ratio)
            rand_for_mask[i][rand_for_mask[i].topk(num_masked).indices] = -1
        cond_mask = (rand_for_mask > 0).reshape(observed_mask.shape).float()
        return cond_mask

    def get_hist_mask(self, observed_mask, for_pattern_mask=None):
        if for_pattern_mask is None:
            for_pattern_mask = observed_mask
        if self.target_strategy == "mix":
            rand_mask = self.get_randmask(observed_mask)

        cond_mask = observed_mask.clone()
        for i in range(len(cond_mask)):
            mask_choice = np.random.rand()
            if self.target_strategy == "mix" and mask_choice > 0.5:
                cond_mask[i] = rand_mask[i]
            else:  # draw another sample for histmask (i-1 corresponds to another sample)
                cond_mask[i] = cond_mask[i] * for_pattern_mask[i - 1] 
        return cond_mask

    def get_test_pattern_mask(self, observed_mask, test_pattern_mask):
        return observed_mask * test_pattern_mask


    def get_side_info(self, observed_tp, cond_mask):
        B, K, L = cond_mask.shape

        time_embed = self.time_embedding(observed_tp, self.emb_time_dim)  # (B,L,emb)
        time_embed = time_embed.unsqueeze(2).expand(-1, -1, K, -1)
        feature_embed = self.embed_layer(
            torch.arange(self.target_dim).to(self.device)
        )  # (K,emb)
        feature_embed = feature_embed.unsqueeze(0).unsqueeze(0).expand(B, L, -1, -1)

        side_info = torch.cat([time_embed, feature_embed], dim=-1)  # (B,L,K,*)
        side_info = side_info.permute(0, 3, 2, 1)  # (B,*,K,L)

        if self.is_unconditional == False:
            side_mask = cond_mask.unsqueeze(1)  # (B,1,K,L)
            side_info = torch.cat([side_info, side_mask], dim=1)

        return side_info

    def calc_loss_valid(
        self, observed_data, cond_mask, observed_mask, side_info, is_train
    ):
        loss_sum = 0
        for t in range(self.num_steps):  # calculate loss for all t
            loss = self.calc_loss(
                observed_data, cond_mask, observed_mask, side_info, is_train, set_t=t
            )
            loss_sum += loss.detach()
        return loss_sum / self.num_steps

    def calc_loss(
        self, observed_data, cond_mask, observed_mask, side_info, is_train, set_t=-1
    ):
        B, K, L = observed_data.shape
        if is_train != 1:  # for validation
            t = (torch.ones(B) * set_t).long().to(self.device)
        else:
            t = torch.randint(0, self.num_steps, [B]).to(self.device)
        current_alpha = self.alpha_torch[t]  # (B,1,1)
        noise = torch.randn_like(observed_data)
        noisy_data = (current_alpha ** 0.5) * observed_data + (1.0 - current_alpha) ** 0.5 * noise

        total_input = self.set_input_to_diffmodel(noisy_data, observed_data, cond_mask)

        predicted = self.diffmodel(total_input, side_info, t)  # (B,K,L)

        target_mask = observed_mask - cond_mask
        residual = (noise - predicted) * target_mask
        num_eval = target_mask.sum()
        loss = (residual ** 2).sum() / (num_eval if num_eval > 0 else 1)
        return loss

    def set_input_to_diffmodel(self, noisy_data, observed_data, cond_mask):
        if self.is_unconditional == True:
            total_input = noisy_data.unsqueeze(1)  # (B,1,K,L)
        else:
            cond_obs = (cond_mask * observed_data).unsqueeze(1)
            noisy_target = ((1 - cond_mask) * noisy_data).unsqueeze(1)
            total_input = torch.cat([cond_obs, noisy_target], dim=1)  # (B,2,K,L)

        return total_input

    def impute(self, observed_data, cond_mask, side_info, n_samples):
        B, K, L = observed_data.shape

        imputed_samples = torch.zeros(B, n_samples, K, L).to(self.device)

        for i in range(n_samples):
            # generate noisy observation for unconditional model
            if self.is_unconditional == True:
                noisy_obs = observed_data
                noisy_cond_history = []
                for t in range(self.num_steps):
                    noise = torch.randn_like(noisy_obs)
                    noisy_obs = (self.alpha_hat[t] ** 0.5) * noisy_obs + self.beta[t] ** 0.5 * noise
                    noisy_cond_history.append(noisy_obs * cond_mask)

            current_sample = torch.randn_like(observed_data)

            for t in range(self.num_steps - 1, -1, -1):
                # if self.is_unconditional == True:
                diff_input = cond_mask * noisy_cond_history[t] + (1.0 - cond_mask) * current_sample
                diff_input = diff_input.unsqueeze(1)  # (B,1,K,L)
                # else:
                #     cond_obs = (cond_mask * observed_data).unsqueeze(1)
                #     noisy_target = ((1 - cond_mask) * current_sample).unsqueeze(1)
                #     diff_input = torch.cat([cond_obs, noisy_target], dim=1)  # (B,2,K,L)
                predicted = self.diffmodel(diff_input, side_info, torch.tensor([t]).to(self.device))

                coeff1 = 1 / self.alpha_hat[t] ** 0.5
                coeff2 = (1 - self.alpha_hat[t]) / (1 - self.alpha[t]) ** 0.5
                current_sample = coeff1 * (current_sample - coeff2 * predicted)

                if t > 0:
                    noise = torch.randn_like(current_sample)
                    sigma = (
                        (1.0 - self.alpha[t - 1]) / (1.0 - self.alpha[t]) * self.beta[t]
                    ) ** 0.5
                    current_sample += sigma * noise

            imputed_samples[:, i] = current_sample.detach()
        return imputed_samples

    def forward(self, batch, is_train=1):
        (
            observed_data,
            observed_mask,
            observed_tp,
            gt_mask,
            for_pattern_mask,
            _,
        ) = self.process_data(batch)
        if is_train == 0:
            cond_mask = gt_mask
        elif self.target_strategy != "random":
            cond_mask = self.get_hist_mask(
                observed_mask, for_pattern_mask=for_pattern_mask
            )
        else:
            cond_mask = self.get_randmask(observed_mask)

        side_info = self.get_side_info(observed_tp, cond_mask)

        loss_func = self.calc_loss if is_train == 1 else self.calc_loss_valid

        return loss_func(observed_data, cond_mask, observed_mask, side_info, is_train)

    def evaluate(self, batch, n_samples):
        (
            observed_data,
            observed_mask,
            observed_tp,
            gt_mask,
            _,
            cut_length,
        ) = self.process_data(batch)

        with torch.no_grad():
            cond_mask = gt_mask
            target_mask = observed_mask - cond_mask

            side_info = self.get_side_info(observed_tp, cond_mask)

            samples = self.impute(observed_data, cond_mask, side_info, n_samples)

            for i in range(len(cut_length)):  # to avoid double evaluation
                target_mask[i, ..., 0 : cut_length[i].item()] = 0
        return samples, observed_data, target_mask, observed_mask, observed_tp