Spaces:
Sleeping
Sleeping
File size: 9,606 Bytes
2875fe6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import numpy as np
import torch
import torch.nn as nn
from .diff_csdi import diff_CSDI
class CSDI_base(nn.Module):
# def __init__(self, target_dim, config, device):
# super().__init__()
# self.device = device
# self.target_dim = target_dim
# self.emb_time_dim = config["model"]["timeemb"]
# self.emb_feature_dim = config["model"]["featureemb"]
# self.is_unconditional = config["model"]["is_unconditional"]
# self.target_strategy = config["model"]["target_strategy"]
# self.emb_total_dim = self.emb_time_dim + self.emb_feature_dim
# if self.is_unconditional == False:
# self.emb_total_dim += 1 # for conditional mask
# self.embed_layer = nn.Embedding(
# num_embeddings=self.target_dim, embedding_dim=self.emb_feature_dim
# )
# config_diff = config["diffusion"]
# config_diff["side_dim"] = self.emb_total_dim
# input_dim = 1 if self.is_unconditional == True else 2
# self.diffmodel = diff_CSDI(config_diff, input_dim)
# # parameters for diffusion models
# self.num_steps = config_diff["num_steps"]
# if config_diff["schedule"] == "quad":
# self.beta = np.linspace(
# config_diff["beta_start"] ** 0.5, config_diff["beta_end"] ** 0.5, self.num_steps
# ) ** 2
# elif config_diff["schedule"] == "linear":
# self.beta = np.linspace(
# config_diff["beta_start"], config_diff["beta_end"], self.num_steps
# )
# self.alpha_hat = 1 - self.beta
# self.alpha = np.cumprod(self.alpha_hat)
# self.alpha_torch = torch.tensor(self.alpha).float().to(self.device).unsqueeze(1).unsqueeze(1)
def time_embedding(self, pos, d_model=128):
pe = torch.zeros(pos.shape[0], pos.shape[1], d_model).to(self.device)
position = pos.unsqueeze(2)
div_term = 1 / torch.pow(
10000.0, torch.arange(0, d_model, 2).to(self.device) / d_model
)
pe[:, :, 0::2] = torch.sin(position * div_term)
pe[:, :, 1::2] = torch.cos(position * div_term)
return pe
def get_randmask(self, observed_mask):
rand_for_mask = torch.rand_like(observed_mask) * observed_mask
rand_for_mask = rand_for_mask.reshape(len(rand_for_mask), -1)
for i in range(len(observed_mask)):
sample_ratio = np.random.rand() # missing ratio
num_observed = observed_mask[i].sum().item()
num_masked = round(num_observed * sample_ratio)
rand_for_mask[i][rand_for_mask[i].topk(num_masked).indices] = -1
cond_mask = (rand_for_mask > 0).reshape(observed_mask.shape).float()
return cond_mask
def get_hist_mask(self, observed_mask, for_pattern_mask=None):
if for_pattern_mask is None:
for_pattern_mask = observed_mask
if self.target_strategy == "mix":
rand_mask = self.get_randmask(observed_mask)
cond_mask = observed_mask.clone()
for i in range(len(cond_mask)):
mask_choice = np.random.rand()
if self.target_strategy == "mix" and mask_choice > 0.5:
cond_mask[i] = rand_mask[i]
else: # draw another sample for histmask (i-1 corresponds to another sample)
cond_mask[i] = cond_mask[i] * for_pattern_mask[i - 1]
return cond_mask
def get_test_pattern_mask(self, observed_mask, test_pattern_mask):
return observed_mask * test_pattern_mask
def get_side_info(self, observed_tp, cond_mask):
B, K, L = cond_mask.shape
time_embed = self.time_embedding(observed_tp, self.emb_time_dim) # (B,L,emb)
time_embed = time_embed.unsqueeze(2).expand(-1, -1, K, -1)
feature_embed = self.embed_layer(
torch.arange(self.target_dim).to(self.device)
) # (K,emb)
feature_embed = feature_embed.unsqueeze(0).unsqueeze(0).expand(B, L, -1, -1)
side_info = torch.cat([time_embed, feature_embed], dim=-1) # (B,L,K,*)
side_info = side_info.permute(0, 3, 2, 1) # (B,*,K,L)
if self.is_unconditional == False:
side_mask = cond_mask.unsqueeze(1) # (B,1,K,L)
side_info = torch.cat([side_info, side_mask], dim=1)
return side_info
def calc_loss_valid(
self, observed_data, cond_mask, observed_mask, side_info, is_train
):
loss_sum = 0
for t in range(self.num_steps): # calculate loss for all t
loss = self.calc_loss(
observed_data, cond_mask, observed_mask, side_info, is_train, set_t=t
)
loss_sum += loss.detach()
return loss_sum / self.num_steps
def calc_loss(
self, observed_data, cond_mask, observed_mask, side_info, is_train, set_t=-1
):
B, K, L = observed_data.shape
if is_train != 1: # for validation
t = (torch.ones(B) * set_t).long().to(self.device)
else:
t = torch.randint(0, self.num_steps, [B]).to(self.device)
current_alpha = self.alpha_torch[t] # (B,1,1)
noise = torch.randn_like(observed_data)
noisy_data = (current_alpha ** 0.5) * observed_data + (1.0 - current_alpha) ** 0.5 * noise
total_input = self.set_input_to_diffmodel(noisy_data, observed_data, cond_mask)
predicted = self.diffmodel(total_input, side_info, t) # (B,K,L)
target_mask = observed_mask - cond_mask
residual = (noise - predicted) * target_mask
num_eval = target_mask.sum()
loss = (residual ** 2).sum() / (num_eval if num_eval > 0 else 1)
return loss
def set_input_to_diffmodel(self, noisy_data, observed_data, cond_mask):
if self.is_unconditional == True:
total_input = noisy_data.unsqueeze(1) # (B,1,K,L)
else:
cond_obs = (cond_mask * observed_data).unsqueeze(1)
noisy_target = ((1 - cond_mask) * noisy_data).unsqueeze(1)
total_input = torch.cat([cond_obs, noisy_target], dim=1) # (B,2,K,L)
return total_input
def impute(self, observed_data, cond_mask, side_info, n_samples):
B, K, L = observed_data.shape
imputed_samples = torch.zeros(B, n_samples, K, L).to(self.device)
for i in range(n_samples):
# generate noisy observation for unconditional model
if self.is_unconditional == True:
noisy_obs = observed_data
noisy_cond_history = []
for t in range(self.num_steps):
noise = torch.randn_like(noisy_obs)
noisy_obs = (self.alpha_hat[t] ** 0.5) * noisy_obs + self.beta[t] ** 0.5 * noise
noisy_cond_history.append(noisy_obs * cond_mask)
current_sample = torch.randn_like(observed_data)
for t in range(self.num_steps - 1, -1, -1):
# if self.is_unconditional == True:
diff_input = cond_mask * noisy_cond_history[t] + (1.0 - cond_mask) * current_sample
diff_input = diff_input.unsqueeze(1) # (B,1,K,L)
# else:
# cond_obs = (cond_mask * observed_data).unsqueeze(1)
# noisy_target = ((1 - cond_mask) * current_sample).unsqueeze(1)
# diff_input = torch.cat([cond_obs, noisy_target], dim=1) # (B,2,K,L)
predicted = self.diffmodel(diff_input, side_info, torch.tensor([t]).to(self.device))
coeff1 = 1 / self.alpha_hat[t] ** 0.5
coeff2 = (1 - self.alpha_hat[t]) / (1 - self.alpha[t]) ** 0.5
current_sample = coeff1 * (current_sample - coeff2 * predicted)
if t > 0:
noise = torch.randn_like(current_sample)
sigma = (
(1.0 - self.alpha[t - 1]) / (1.0 - self.alpha[t]) * self.beta[t]
) ** 0.5
current_sample += sigma * noise
imputed_samples[:, i] = current_sample.detach()
return imputed_samples
def forward(self, batch, is_train=1):
(
observed_data,
observed_mask,
observed_tp,
gt_mask,
for_pattern_mask,
_,
) = self.process_data(batch)
if is_train == 0:
cond_mask = gt_mask
elif self.target_strategy != "random":
cond_mask = self.get_hist_mask(
observed_mask, for_pattern_mask=for_pattern_mask
)
else:
cond_mask = self.get_randmask(observed_mask)
side_info = self.get_side_info(observed_tp, cond_mask)
loss_func = self.calc_loss if is_train == 1 else self.calc_loss_valid
return loss_func(observed_data, cond_mask, observed_mask, side_info, is_train)
def evaluate(self, batch, n_samples):
(
observed_data,
observed_mask,
observed_tp,
gt_mask,
_,
cut_length,
) = self.process_data(batch)
with torch.no_grad():
cond_mask = gt_mask
target_mask = observed_mask - cond_mask
side_info = self.get_side_info(observed_tp, cond_mask)
samples = self.impute(observed_data, cond_mask, side_info, n_samples)
for i in range(len(cut_length)): # to avoid double evaluation
target_mask[i, ..., 0 : cut_length[i].item()] = 0
return samples, observed_data, target_mask, observed_mask, observed_tp
|