File size: 3,138 Bytes
3d3d712 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
# Quick Start
## Installation
You can install TaskWeaver by running the following command:
```bash
# [optional] create a conda environment to isolate the dependencies
# conda create -n taskweaver python=3.10
# conda activate taskweaver
# clone the repository
git clone https://github.com/microsoft/TaskWeaver.git
cd TaskWeaver
# install the requirements
pip install -r requirements.txt
```
## Project Directory
TaskWeaver runs as a process, you need to create a project directory to store plugins and configuration files.
We provided a sample project directory in the `project` folder. You can copy the `project` folder to your workspace.
A project directory typically contains the following files and folders:
```bash
📦project
┣ 📜taskweaver_config.json # the configuration file for TaskWeaver
┣ 📂plugins # the folder to store plugins
┣ 📂planner_examples # the folder to store planner examples
┣ 📂codeinterpreter_examples # the folder to store code interpreter examples
┣ 📂sample_data # the folder to store sample data used for evaluations
┣ 📂logs # the folder to store logs, will be generated after program starts
┗ 📂workspace # the directory stores session data, will be generated after program starts
┗ 📂 session_id
┣ 📂ces # the folder used by the code execution service
┗ 📂cwd # the current working directory to run the generated code
```
## OpenAI Configuration
Before running TaskWeaver, you need to provide your OpenAI API key and other necessary information.
You can do this by editing the `taskweaver_config.json` file.
If you are using Azure OpenAI, you need to set the following parameters in the `taskweaver_config.json` file:
### Azure OpenAI
```json
{
"llm.api_base": "https://xxx.openai.azure.com/",
"llm.api_key": "your_api_key",
"llm.api_type": "azure",
"llm.api_version": "the api version",
"llm.model": "the model name, e.g., gpt-4"
}
```
### OpenAI
```json
{
"llm.api_key": "the api key",
"llm.model": "the model name, e.g., gpt-4"
}
```
>💡 Only the latest OpenAI API supports the `json_object` response format.
> If you are using an older version of OpenAI API, you need to set the `llm.response_format` to `null`.
More configuration options can be found in the [configuration documentation](configurations.md).
## Start TaskWeaver
```bash
# assume you are in the taskweaver folder
# -p is the path to the project directory
python -m taskweaver -p ./project/
```
This will start the TaskWeaver process and you can interact with it through the command line interface.
If everything goes well, you will see the following prompt:
```bash
=========================================================
_____ _ _ __
|_ _|_ _ ___| | _ | | / /__ ____ __ _____ _____
| |/ _` / __| |/ /| | /| / / _ \/ __ `/ | / / _ \/ ___/
| | (_| \__ \ < | |/ |/ / __/ /_/ /| |/ / __/ /
|_|\__,_|___/_|\_\|__/|__/\___/\__,_/ |___/\___/_/
=========================================================
TaskWeaver: I am TaskWeaver, an AI assistant. To get started, could you please enter your request?
Human: ___
```
|