File size: 7,938 Bytes
3d3d712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import json
from contextlib import contextmanager
from typing import Any, Generator, List, Optional

import requests
from injector import inject

from taskweaver.llm.base import CompletionService, EmbeddingService, LLMServiceConfig
from taskweaver.llm.util import ChatMessageType, format_chat_message


class OllamaServiceConfig(LLMServiceConfig):
    def _configure(self) -> None:
        self._set_name("ollama")

        shared_api_base = self.llm_module_config.api_base
        self.api_base = self._get_str(
            "api_base",
            shared_api_base if shared_api_base is not None else "http://localhost:11434",
        )

        shared_model = self.llm_module_config.model
        self.model = self._get_str(
            "model",
            shared_model if shared_model is not None else "llama2",
        )
        shared_backup_model = self.llm_module_config.backup_model
        self.backup_model = self._get_str(
            "backup_model",
            shared_backup_model if shared_backup_model is not None else self.model,
        )
        shared_embedding_model = self.llm_module_config.embedding_model
        self.embedding_model = self._get_str(
            "embedding_model",
            shared_embedding_model if shared_embedding_model is not None else self.model,
        )

        shared_response_format = self.llm_module_config.response_format
        self.response_format = self._get_enum(
            "response_format",
            options=["json", "json_object", "text"],
            default=shared_response_format if shared_response_format is not None else "text",
        )
        if self.response_format == "json_object":
            self.response_format = "json"


class OllamaService(CompletionService, EmbeddingService):
    @inject
    def __init__(self, config: OllamaServiceConfig):
        self.config = config

    def chat_completion(
        self,
        messages: List[ChatMessageType],
        use_backup_engine: bool = False,
        stream: bool = True,
        temperature: Optional[float] = None,
        max_tokens: Optional[int] = None,
        top_p: Optional[float] = None,
        stop: Optional[List[str]] = None,
        **kwargs: Any,
    ) -> Generator[ChatMessageType, None, None]:
        try:
            return self._chat_completion(
                messages=messages,
                use_backup_engine=use_backup_engine,
                stream=stream,
                temperature=temperature,
                max_tokens=max_tokens,
                top_p=top_p,
                stop=stop,
                **kwargs,
            )
        except Exception:
            return self._completion(
                messages=messages,
                use_backup_engine=use_backup_engine,
                stream=stream,
                temperature=temperature,
                max_tokens=max_tokens,
                top_p=top_p,
                stop=stop,
                **kwargs,
            )

    def _chat_completion(
        self,
        messages: List[ChatMessageType],
        use_backup_engine: bool = False,
        stream: bool = True,
        temperature: Optional[float] = None,
        max_tokens: Optional[int] = None,
        top_p: Optional[float] = None,
        stop: Optional[List[str]] = None,
        **kwargs: Any,
    ) -> Generator[ChatMessageType, None, None]:
        api_endpoint = "/api/chat"
        payload = {
            "model": self.config.model if not use_backup_engine else self.config.backup_model,
            "messages": messages,
            "stream": stream,
        }

        if self.config.response_format == "json":
            payload["format"] = "json"

        if stream is False:
            with self._request_api(api_endpoint, payload) as resp:
                if resp.status_code != 200:
                    raise Exception(
                        f"Failed to get completion with error code {resp.status_code}: {resp.text}",
                    )
                response: str = resp.json()["response"]
            yield format_chat_message("assistant", response)

        with self._request_api(api_endpoint, payload, stream=True) as resp:
            if resp.status_code != 200:
                raise Exception(
                    f"Failed to get completion with error code {resp.status_code}: {resp.text}",
                )
            for chunk_obj in self._stream_process(resp):
                if "error" in chunk_obj:
                    raise Exception(
                        f"Failed to get completion with error: {chunk_obj['error']}",
                    )
                if "message" in chunk_obj:
                    message = chunk_obj["message"]
                    yield format_chat_message("assistant", message["content"])

    def _completion(
        self,
        messages: List[ChatMessageType],
        use_backup_engine: bool = False,
        stream: bool = True,
        temperature: Optional[float] = None,
        max_tokens: Optional[int] = None,
        top_p: Optional[float] = None,
        stop: Optional[List[str]] = None,
        **kwargs: Any,
    ) -> Generator[ChatMessageType, None, None]:
        api_endpoint = "/api/generate"
        payload = {
            "model": self.config.model if not use_backup_engine else self.config.backup_model,
            "prompt": "",
            "stream": stream,
        }

        if self.config.response_format == "json":
            payload["format"] = "json"

        for message in messages:
            content: str = message["content"]
            if message["role"] == "system":
                payload["system"] = content
            else:
                payload["prompt"] = f"{payload['prompt']}\n{content}"

        if stream is False:
            with self._request_api(api_endpoint, payload) as resp:
                if resp.status_code != 200:
                    raise Exception(
                        f"Failed to get completion with error code {resp.status_code}: {resp.text}",
                    )
                response: str = resp.json()["response"]
            yield format_chat_message("assistant", response)

        with self._request_api(api_endpoint, payload, stream=True) as resp:
            if resp.status_code != 200:
                raise Exception(
                    f"Failed to get completion with error code {resp.status_code}: {resp.text}",
                )
            for chunk_obj in self._stream_process(resp):
                if "error" in chunk_obj:
                    raise Exception(
                        f"Failed to get completion with error: {chunk_obj['error']}",
                    )
                if "response" in chunk_obj:
                    response = chunk_obj["response"]
                    yield format_chat_message("assistant", response)

    def get_embeddings(self, strings: List[str]) -> List[List[float]]:
        return [self._get_embedding(string) for string in strings]

    def _stream_process(self, resp: requests.Response) -> Generator[Any, None, None]:
        for line in resp.iter_lines():
            line_str = line.decode("utf-8")
            if line_str and line_str.strip() != "":
                yield json.loads(line_str)

    def _get_embedding(self, string: str) -> List[float]:
        payload = {"model": self.config.embedding_model, "prompt": string}

        with self._request_api("/api/embeddings", payload) as resp:
            if resp.status_code != 200:
                raise Exception(
                    f"Failed to get embedding with error code {resp.status_code}: {resp.text}",
                )
            return resp.json()["embedding"]

    @contextmanager
    def _request_api(self, api_path: str, payload: Any, stream: bool = False):
        url = f"{self.config.api_base}{api_path}"
        with requests.Session() as session:
            with session.post(url, json=payload, stream=stream) as resp:
                yield resp