File size: 4,742 Bytes
5769ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Lloyd algorithm while estimating average cost?

import os

import matplotlib.pyplot as plt
import matplotlib as mpl
from pytest import param
from pytorch_lightning.utilities.seed import seed_everything
import torch

from risk_biased.scene_dataset.loaders import SceneDataLoaders
from risk_biased.scene_dataset.scene import RandomScene, RandomSceneParams
from matplotlib.patches import Ellipse
from risk_biased.utils.callbacks import get_fast_slow_scenes, DrawCallbackParams
from risk_biased.utils.config_argparse import config_argparse

from risk_biased.utils.load_model import load_from_config


def draw_latent_biased(
    model: torch.nn.Module,
    device,
    scene: RandomScene,
    n_samples: int,
    params: DrawCallbackParams,
):
    ped_trajs = scene.get_pedestrians_trajectories()
    n_scenes, n_agents, n_steps, features = ped_trajs.shape
    ego_traj = scene.get_ego_ref_trajectory([t * params.dt for t in range(n_steps)])
    ego_past, ego_future = torch.split(
        torch.from_numpy(ego_traj.astype("float32")),
        [params.num_steps, params.num_steps_future],
        dim=2,
    )
    ego_past = ego_past.repeat(n_scenes, n_samples, 1, 1).view(
        -1, 1, params.num_steps, features
    )
    ego_future = ego_future.repeat(n_scenes, n_samples, 1, 1).view(
        -1, 1, params.num_steps_future, features
    )
    input_traj = ped_trajs[:, :, : params.num_steps]
    normalized_input, offset = SceneDataLoaders.normalize_trajectory(
        torch.from_numpy(input_traj.astype("float32")).contiguous().to(device)
    )
    normalized_input = (
        normalized_input.view(n_scenes, 1, n_agents, params.num_steps, features)
        .repeat(1, n_samples, 1, 1, 1)
        .view(-1, n_agents, params.num_steps, features)
    )
    mask_input = torch.ones_like(normalized_input[..., 0])
    map = torch.empty(n_scenes, 0, 0, features, device=device)
    mask_map = torch.empty(n_scenes, 0, 0)
    offset = (
        offset.view(n_scenes, 1, n_agents, features)
        .repeat(1, n_samples, 1, 1)
        .view(-1, n_agents, features)
    )
    n_scenes = ped_trajs.shape[0]

    risk_level = (
        torch.linspace(0, 1, n_samples)
        .view(1, n_samples, 1)
        .repeat(n_scenes, 1, n_agents)
    )

    y_samples, biased_mu, biased_log_std = model(
        normalized_input,
        mask_input,
        map,
        mask_map,
        offset=offset,
        x_ego=ego_past,
        y_ego=ego_future,
        risk_level=risk_level.view(-1, n_agents),
    )

    biased_mu = (
        biased_mu.reshape(n_scenes, n_samples, n_agents, 2)
        .permute(0, 2, 1, 3)
        .mean(0)
        .cpu()
        .detach()
        .numpy()
    )
    biased_std = (
        (
            2
            * biased_log_std.reshape(n_scenes, n_samples, n_agents, 2).permute(
                0, 2, 1, 3
            )
        )
        .exp()
        .mean(0)
        .sqrt()
        .cpu()
        .detach()
        .numpy()
    )
    risk_level = risk_level.permute(0, 2, 1).mean(0).cpu().detach().numpy()

    fig, ax = plt.subplots()
    cmap = plt.get_cmap("RdBu_r")
    for a in range(n_agents):
        for j in range(n_samples):
            ellipse = Ellipse(
                (biased_mu[a, j, 0], biased_mu[a, j, 1]),
                width=biased_std[a, j, 0] * 2,
                height=biased_std[a, j, 1] * 2,
                facecolor=cmap(risk_level[a, j]),
                alpha=0.1,
            )
            ax.add_patch(ellipse)
    norm = mpl.colors.Normalize(vmin=0, vmax=1, clip=True)
    sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
    plt.colorbar(sm, label="Risk level")
    plt.axis([-3, 3, -3, 3])
    plt.show()


if __name__ == "__main__":
    # Draws the biased distributions in latent space for different risk levels in two scenarios: safer_fast and safer_slow.
    working_dir = os.path.dirname(os.path.realpath(__file__))
    config_path = os.path.join(
        working_dir, "..", "..", "risk_biased", "config", "learning_config.py"
    )
    cfg = config_argparse(config_path)

    model, loaders, cfg = load_from_config(cfg)
    assert (
        cfg.latent_dim == 2
        and "The latent dimension of the model must be exactly 2 to be plotted (no dimensionality reduction capabilities)"
    )
    scene_params = RandomSceneParams.from_config(cfg)
    safer_fast_scene, safer_slow_scene = get_fast_slow_scenes(scene_params, 128)
    draw_params = DrawCallbackParams.from_config(cfg)
    if cfg.seed is not None:
        seed_everything(cfg.seed)

    n_samples = 64
    draw_latent_biased(
        model.model, model.device, safer_fast_scene, n_samples, draw_params
    )
    draw_latent_biased(
        model.model, model.device, safer_slow_scene, n_samples, draw_params
    )