Spaces:
Sleeping
Sleeping
File size: 7,617 Bytes
ea0ff68 7d555a4 4bd2beb ea0ff68 7d555a4 4bd2beb 1623114 a17012f 1623114 ea0ff68 9f940ae 30136ab ae7fad7 9f940ae ea0ff68 fe34c7c ea0ff68 12ce985 16ae58d 12ce985 9f940ae f804b80 a17012f 445f48d 4bd2beb 31b9770 4bd2beb 1623114 0b4e51e 458520f ea0ff68 a17012f 4a74247 4bd2beb 31b9770 4bd2beb 1623114 0b4e51e 458520f 1623114 445f48d 4bd2beb a17012f 4a74247 4201d5b 4bd2beb 31b9770 4bd2beb 31b9770 4bd2beb ea0ff68 74c7d7a ea0ff68 1623114 ea0ff68 1623114 ea0ff68 1623114 7c811b0 f733e13 02ff828 adb8993 458520f 9f940ae f733e13 02ff828 adb8993 458520f d8a69c8 9f940ae ea0ff68 633c00d ea0ff68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import json
import os
import streamlit as st
import pickle
from transformers import AutoTokenizer, BertForSequenceClassification, pipeline
from sklearn.feature_extraction.text import TfidfVectorizer
def load_models():
st.session_state.loaded = True
with open('models/tfidf_vectorizer_untrue_inform_detection_tfidf_bg_0.96_F1_score_3Y_N_Q1_082023.pkl', 'rb') as f:
st.session_state.tfidf_vectorizer_untrue_inf = pickle.load(f)
with open('models/SVM_model_untrue_inform_detection_tfidf_bg_0.96_F1_score_3Y_N_Q1_082023.pkl', 'rb') as f:
st.session_state.untrue_detector = pickle.load(f)
st.session_state.bert_disinfo = pipeline(task="text-classification",
model=BertForSequenceClassification.from_pretrained("usmiva/bert-desinform-bg", num_labels=2),
tokenizer=AutoTokenizer.from_pretrained("usmiva/bert-desinform-bg"))
st.session_state.bert_gpt = pipeline(task="text-classification",
model=BertForSequenceClassification.from_pretrained("usmiva/bert-deepfake-bg", num_labels=2),
tokenizer=AutoTokenizer.from_pretrained("usmiva/bert-deepfake-bg"))
st.session_state.emotions = pipeline(task="text-classification",
model=BertForSequenceClassification.from_pretrained("TRACES/emotions", use_auth_token=os.environ['ACCESS_TOKEN2'], num_labels=11),
tokenizer=AutoTokenizer.from_pretrained("usmiva/bert-web-bg"))
def load_content():
with open('resource/page_content.json', encoding='utf8') as json_file:
return json.load(json_file)
def switch_lang(lang):
if 'lang' in st.session_state:
if lang == 'bg':
st.session_state.lang = 'bg'
else:
st.session_state.lang = 'en'
if 'lang' not in st.session_state:
st.session_state.lang = 'bg'
if all([
'bert_gpt_result' not in st.session_state,
'untrue_detector_result' not in st.session_state,
'bert_disinfo_result' not in st.session_state,
'emotions_result' not in st.session_state
]):
st.session_state.bert_gpt_result = [{'label': '', 'score': 1}]
st.session_state.untrue_detector_result = ''
st.session_state.untrue_detector_probability = 1
st.session_state.bert_disinfo_result = [{'label': '', 'score': 1}]
st.session_state.emotions_result = [{'label': '', 'score': 1}]
content = load_content()
if 'loaded' not in st.session_state:
load_models()
#######################################################################################################################
st.title(content['title'][st.session_state.lang])
col1, col2, col3 = st.columns([1, 1, 10])
with col1:
st.button(
label='EN',
key='en',
on_click=switch_lang,
args=['en']
)
with col2:
st.button(
label='BG',
key='bg',
on_click=switch_lang,
args=['bg']
)
if 'agree' not in st.session_state:
st.session_state.agree = False
if st.session_state.agree:
tab_tool, tab_terms = st.tabs([content['tab_tool'][st.session_state.lang], content['tab_terms'][st.session_state.lang]])
with tab_tool:
user_input = st.text_area(content['textbox_title'][st.session_state.lang],
content['text_placeholder'][st.session_state.lang]).strip('\n')
if st.button(content['analyze_button'][st.session_state.lang]):
st.session_state.bert_gpt_result = st.session_state.bert_gpt(user_input)
user_tfidf_untrue_inf = st.session_state.tfidf_vectorizer_untrue_inf.transform([user_input])
st.session_state.untrue_detector_result = st.session_state.untrue_detector.predict(user_tfidf_untrue_inf)[0]
st.session_state.untrue_detector_probability = st.session_state.untrue_detector.predict_proba(user_tfidf_untrue_inf)[0]
st.session_state.untrue_detector_probability = max(st.session_state.untrue_detector_probability[0], st.session_state.untrue_detector_probability[1])
st.session_state.bert_disinfo_result = st.session_state.bert_disinfo(user_input)
st.session_state.emotions_result = st.session_state.emotions(user_input)
if st.session_state.bert_gpt_result[0]['label'] == 'LABEL_1':
st.warning(content['bert_gpt'][st.session_state.lang] +
str(round(st.session_state.bert_gpt_result[0]['score'] * 100, 2)) +
content['bert_gpt_prob'][st.session_state.lang], icon = "⚠️")
else:
st.success(content['bert_human'][st.session_state.lang] +
str(round(st.session_state.bert_gpt_result[0]['score'] * 100, 2)) +
content['bert_human_prob'][st.session_state.lang], icon="✅")
if st.session_state.untrue_detector_result == 0:
st.warning(content['untrue_getect_yes'][st.session_state.lang] +
str(round(st.session_state.untrue_detector_probability * 100, 2)) +
content['untrue_yes_proba'][st.session_state.lang], icon="⚠️")
else:
st.success(content['untrue_getect_no'][st.session_state.lang] +
str(round(st.session_state.untrue_detector_probability * 100, 2)) +
content['untrue_no_proba'][st.session_state.lang], icon="✅")
if st.session_state.bert_disinfo_result[0]['label'] == 'LABEL_1':
st.warning(content['bert_yes_1'][st.session_state.lang] +
str(round(st.session_state.bert_disinfo_result[0]['score'] * 100, 2)) +
content['bert_yes_2'][st.session_state.lang], icon = "⚠️")
else:
st.success(content['bert_no_1'][st.session_state.lang] +
str(round(st.session_state.bert_disinfo_result[0]['score'] * 100, 2)) +
content['bert_no_2'][st.session_state.lang], icon="✅")
if st.session_state.emotions_result[0]['score'] < 0.97:
st.warning(content['emotions_label_1'][st.session_state.lang] +
str(st.session_state.emotions_result[0]['label']) +
content['emotions_label_2'][st.session_state.lang] +
str(round(st.session_state.emotions_result[0]['score'] * 100, 2)) +
content['emotions_label_3'][st.session_state.lang] +
content['emotions_label_4'][st.session_state.lang], icon = "⚠️")
else:
st.info(content['emotions_label_1'][st.session_state.lang] +
str(st.session_state.emotions_result[0]['label']) +
content['emotions_label_2'][st.session_state.lang] +
str(round(st.session_state.emotions_result[0]['score'] * 100, 2)) +
content['emotions_label_3'][st.session_state.lang]+
content['emotions_label_5'][st.session_state.lang])
st.info(content['disinformation_definition'][st.session_state.lang], icon="ℹ️")
with tab_terms:
st.write(content['disclaimer'][st.session_state.lang])
else:
st.write(content['disclaimer_title'][st.session_state.lang])
st.write(content['disclaimer'][st.session_state.lang])
if st.button(content['disclaimer_agree_text'][st.session_state.lang]):
st.session_state.agree = True
st.experimental_rerun()
|