File size: 5,277 Bytes
7205d15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a2047b
7205d15
 
 
d01b63c
7205d15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
654c361
7205d15
 
 
 
 
 
3716982
7205d15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f60de6
7205d15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
075cdf1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import polars as pl
import numpy as np
import joblib
from shiny import App, reactive, render, ui
import matplotlib.pyplot as plt
import matplotlib.ticker as tkr
import seaborn as sns
import adjustText
sns.set_style('whitegrid')


import matplotlib
cmap_sum = matplotlib.colors.LinearSegmentedColormap.from_list("", ['#FFFFFF','#FFB000','#FE6100'])

xwoba_model = joblib.load('joblib_model/xwoba_model.joblib')

x = np.arange(-30,90.5,.5)
y = np.arange(0,120.5,0.1)

xx, yy = np.meshgrid(x, y)

df = pl.DataFrame({'launch_angle': xx.ravel(), 'launch_speed': yy.ravel()})

df = df.with_columns(
    pl.Series('xwoba', xwoba_model.predict_proba(df.select(['launch_angle','launch_speed'])) @ [0, 0.883, 1.244, 1.569, 2.004])
)

df = df.with_columns(
    pl.Series('xslg', xwoba_model.predict_proba(df.select(['launch_angle','launch_speed'])) @ [0, 1, 2, 3, 4])
)

app_ui = ui.page_sidebar(
    ui.sidebar(
        ui.markdown("""
        ### How to use this app
        
        1. Click anywhere on the plot to select a point, or manually enter coordinates
        2. The selected point's coordinates will update automatically
        3. The xwOBA value will be calculated based on these coordinates
        """),
        ui.hr(),
        ui.input_numeric("x_select", "Launch Speed (mph)", value=110),
        ui.input_numeric("y_select", "Launch Angle (°)", value=30),
        ui.input_switch("flip_stat", "xwOBA", value=False),


    ),
    ui.output_plot("plot",width='900px',height='900px', click=True)
)


def server(input, output, session):
    # Store the coordinates in reactive values
    x_coord = reactive.value(110)
    y_coord = reactive.value(30)
    
    @reactive.effect
    @reactive.event(input.plot_click)
    def _():
        # Update reactive values when plot is clicked
        click_data = input.plot_click()
        if click_data is not None:
            x_coord.set(click_data["x"])
            y_coord.set(click_data["y"])
            # Update the numeric inputs
            ui.update_numeric("x_select", value=round(click_data["x"],1))
            ui.update_numeric("y_select", value=round(click_data["y"],1))
    
    @reactive.effect
    @reactive.event(input.x_select, input.y_select)
    def _():
        # Update reactive values when numeric inputs change
        x_coord.set(round(input.x_select(),1))
        y_coord.set(round(input.y_select(),1))


    @render.plot
    def plot():
        switch = input.flip_stat()
        fig, ax = plt.subplots(1, 1, figsize=(9, 9))


        if switch:
            h = ax.hexbin(df['launch_speed'], 
                        df['launch_angle'],
                        C=df['xwoba'], 
                        gridsize=(40,25), 
                        cmap=cmap_sum,
                        vmin=0.0,
                        vmax=2.0,)
            bounds=[0.0,0.4,0.8,1.2,1.6,2.0]
            fig.colorbar(h, ax=ax, label='xwOBA',format=tkr.FormatStrFormatter('%.3f'),shrink=0.5,
                        ticks=bounds)
            
        else:
            h = ax.hexbin(df['launch_speed'], 
                        df['launch_angle'],
                        C=df['xslg'], 
                        gridsize=(40,25), 
                        cmap=cmap_sum,
                        vmin=0.0,
                        vmax=4.0,)
            bounds=[0.0,0.5,1,1.5,2,2.5,3,3.5,4]
            fig.colorbar(h, ax=ax, label='xSLG',format=tkr.FormatStrFormatter('%.3f'),shrink=0.5,
                        ticks=bounds)



        ax.set_xlabel('Launch Speed')
        ax.set_ylabel('Launch Angle')
        if switch:
            ax.set_title('Exit Velocity vs Launch Angle\nExpected Weighted On Base Average (xwOBA)\nBy: @TJStats, Data:MLB')
        else:
            ax.set_title('Exit Velocity vs Launch Angle\nExpected Total Bases (xSLG)\nBy: @TJStats, Data:MLB')
            
        ax.grid(False)
        ax.axis('square')
        ax.set_xlim(0, 120)
        ax.set_ylim(-30, 90)

        x_select = input.x_select()
        y_select = input.y_select()


        sns.scatterplot(x=[x_select],y=[y_select],color='#648FFF',s=50,ax=ax,edgecolor='k',zorder=100)

        
        if switch:
            xwoba_value = (xwoba_model.predict_proba([[y_select,x_select]]) @ [0, 0.883, 1.244, 1.569, 2.004])[0]
            texts = [ax.text(x_select+3, y_select+3, f'xwOBA: {xwoba_value:.3f}', color='black', fontsize=12, weight='bold',
                            zorder=1000, bbox=dict(facecolor='white', alpha=0.5, edgecolor='black'))]
    
        else:
            xwoba_value = (xwoba_model.predict_proba([[y_select,x_select]]) @ [0, 1, 2, 3, 4])[0]
            texts = [ax.text(x_select+3, y_select+3, f'xSLG: {xwoba_value:.3f}', color='black', fontsize=12, weight='bold',
                            zorder=1000, bbox=dict(facecolor='white', alpha=0.5, edgecolor='black'))]
    



        adjustText.adjust_text(texts,

                                arrowprops=dict(arrowstyle='->', color='#DC267F'),avoid_self=True,
                                min_arrow_len =5)
        # xwoba_value = 

        ax.axhline(y=y_select, color='k', linestyle='--',linewidth=1,alpha=0.5)
        ax.axvline(x=x_select, color='k', linestyle='--',linewidth=1,alpha=0.5)

        # ax.axis('square')


app = App(app_ui, server)