Spaces:
Running
Running
File size: 4,783 Bytes
9551276 3be135a 5e72808 95edb23 5e72808 2bcefc7 95edb23 2bcefc7 95edb23 14f07e7 2bcefc7 3be135a 14f07e7 5e72808 3be135a 95edb23 5e72808 2bcefc7 110c323 bb25d5e 5e72808 e42b84a 5d31a12 5e72808 70e2653 95edb23 70e2653 95edb23 70e2653 95edb23 70e2653 95edb23 70e2653 95edb23 110c323 415dd0a 2bcefc7 415dd0a 3be135a 110c323 5e72808 1acd8d1 476f2a1 1acd8d1 04f0cbd 5a9b61d 04f0cbd 04240c7 04f0cbd 5a9b61d 04f0cbd 1acd8d1 04f0cbd 04240c7 1acd8d1 04f0cbd 5b1af87 95edb23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
import os
import random
import gradio as gr
from groq import Groq
from moviepy.editor import VideoFileClip, TextClip, CompositeVideoClip
client = Groq(
api_key=os.environ.get("Groq_Api_Key")
)
def create_history_messages(history):
history_messages = [{"role": "user", "content": m[0]} for m in history]
history_messages.extend([{"role": "assistant", "content": m[1]} for m in history])
return history_messages
def generate_response(prompt, history, model, temperature, max_tokens, top_p, seed):
messages = create_history_messages(history)
messages.append({"role": "user", "content": prompt})
if seed == 0:
seed = random.randint(1, 100000)
stream = client.chat.completions.create(
messages=messages,
model=model,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
seed=seed,
stop=None,
stream=True,
)
response = ""
for chunk in stream:
delta_content = chunk.choices[0].delta.content
if delta_content is not None:
response += delta_content
yield response
return response
def process_video(text):
video_folder = "videos"
video_files = [os.path.join(video_folder, f) for f in os.listdir(video_folder) if f.endswith(('mp4', 'mov', 'avi', 'mkv'))]
if not video_files:
raise FileNotFoundError("No video files found in the specified directory.")
selected_video = random.choice(video_files)
video = VideoFileClip(selected_video)
start_time = random.uniform(0, max(0, video.duration - 60))
video = video.subclip(start_time, min(start_time + 60, video.duration))
video = video.resize(height=1920).crop(x1=video.w // 2 - 540, x2=video.w // 2 + 540)
text_lines = text.split()
text = "\n".join([" ".join(text_lines[i:i+8]) for i in range(0, len(text_lines), 8)])
text_clip = TextClip(text, fontsize=70, color='white', size=video.size, method='caption')
text_clip = text_clip.set_position('center').set_duration(video.duration)
final = CompositeVideoClip([video, text_clip])
output_path = "output.mp4"
final.write_videofile(output_path, codec="libx264")
return output_path
additional_inputs = [
gr.Dropdown(choices=["llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "gemma-7b-it"], value="llama3-70b-8192", label="Model"),
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Temperature", info="Controls diversity of the generated text. Lower is more deterministic, higher is more creative."),
gr.Slider(minimum=1, maximum=32192, step=1, value=4096, label="Max Tokens", info="The maximum number of tokens that the model can process in a single response.<br>Maximums: 8k for gemma 7b, llama 7b & 70b, 32k for mixtral 8x7b."),
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Top P", info="A method of text generation where a model will only consider the most probable next tokens that make up the probability p."),
gr.Number(precision=0, value=42, label="Seed", info="A starting point to initiate generation, use 0 for random")
]
def chat_interface():
return gr.Interface(
fn=generate_response,
inputs=[
gr.Textbox(label="Prompt"),
gr.Textbox(label="History", type="text"), # Assuming history is provided as text
gr.Textbox(label="Model"),
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Temperature"),
gr.Slider(minimum=1, maximum=32192, step=1, label="Max Tokens"),
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Top P"),
gr.Number(precision=0, label="Seed")
],
outputs=gr.Textbox(label="Response"),
title="YTSHorts Maker - Chat Interface",
description="Powered by GROQ.",
additional_inputs=additional_inputs,
live=True # Enable live updates for the chat interface
)
def process_video_interface():
text_input = gr.Textbox(lines=5, label="Text (8 words max per line)")
video_output = gr.Video(label="Processed Video")
def process_video_callback(text):
output_path = process_video(text)
return output_path # Return the output path directly
return gr.Interface(
fn=process_video_callback,
inputs=text_input,
outputs=video_output,
title="YTSHorts Maker - Video Processing",
description="Select a video file from 'videos' folder, add text, and process.",
)
demo = gr.Interface(
fn=None, # No main function needed for multi-interface setup
interfaces=[chat_interface(), process_video_interface()],
title="YTSHorts Maker",
description="Powered by GROQ, MoviePy, and other tools.",
theme="soft",
)
demo.launch() |